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Basic Principles of Modeling Physical Networks
In this section...
“Overview of the Physical Network Approach to Modeling Physical Systems” on page 1-2
“Variable Types” on page 1-3
“Building the Mathematical Model” on page 1-4
“Direction of Variables” on page 1-5
“Connector Ports and Connection Lines” on page 1-6

Overview of the Physical Network Approach to Modeling Physical
Systems
Simscape software is a set of block libraries and special simulation features for modeling physical
systems in the Simulink® environment. It employs the Physical Network approach, which differs from
the standard Simulink modeling approach and is particularly suited to simulating systems that consist
of real physical components.

Simulink blocks represent basic mathematical operations. When you connect Simulink blocks
together, the resulting diagram is equivalent to the mathematical model, or representation, of the
system under design. Simscape technology lets you create a network representation of the system
under design, based on the Physical Network approach. According to this approach, each system is
represented as consisting of functional elements that interact with each other by exchanging energy
through their ports.

These connection ports are nondirectional. They mimic physical connections between elements.
Connecting Simscape blocks together is analogous to connecting real components, such as pumps,
valves, and so on. In other words, Simscape diagrams mimic the physical system layout. If physical
components can be connected, their models can be connected, too. You do not have to specify flow
directions and information flow when connecting Simscape blocks, just as you do not have to specify
this information when you connect real physical components. The Physical Network approach, with
its Through and Across variables and nondirectional physical connections, automatically resolves all
the traditional issues with variables, directionality, and so on.

The number of connection ports for each element is determined by the number of energy flows it
exchanges with other elements in the system, and depends on the level of idealization. For example, a
fixed-displacement hydraulic pump in its simplest form can be represented as a two-port element,
with one energy flow associated with the inlet (suction) and the other with the outlet. In this
representation, the angular velocity of the driving shaft is assumed constant, making it possible to
neglect the energy exchange between the pump and the shaft. To account for a variable driving
torque, you need a third port associated with the driving shaft.

An energy flow is characterized by its variables. Each energy flow is associated with two variables,
one Through and one Across (see “Variable Types” on page 1-3 for more information). Usually,
these are the variables whose product is the energy flow in watts. They are called the basic, or
conjugate, variables. For example, the basic variables for mechanical translational systems are force
and velocity, for mechanical rotational systems—torque and angular velocity, for hydraulic systems—
flow rate and pressure, for electrical systems—current and voltage.

The following example illustrates a Physical Network representation of a double-acting hydraulic
cylinder.
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The element is represented with three energy flows: two flows of hydraulic energy through the inlet
and outlet of the cylinder and a flow of mechanical energy associated with the rod motion. It
therefore has the following three connector ports:

• A — Hydraulic conserving port associated with pressure p1 (an Across variable) and flow rate q1 (a
Through variable)

• B — Hydraulic conserving port associated with pressure p2 (an Across variable) and flow rate q2 (a
Through variable)

• R — Mechanical translational conserving port associated with rod velocity v3 (an Across variable)
and force F3 (a Through variable)

See “Connector Ports and Connection Lines” on page 1-6 for more information on connector port
types.

Variable Types
Physical Network approach supports two types of variables:

• Through — Variables that are measured with a gauge connected in series to an element.
• Across — Variables that are measured with a gauge connected in parallel to an element.

The following table lists the Through and Across variables associated with each type of physical
domain in Simscape software:

Physical Domain Across Variable Through Variable
Electrical Voltage Current
Gas Absolute pressure and

temperature
Mass flow rate and energy flow
rate

Hydraulic Gauge pressure Volumetric flow rate
Isothermal liquid Absolute pressure Mass flow rate
Magnetic Magnetomotive force (mmf) Flux
Mechanical rotational Angular velocity Torque
Mechanical translational Translational velocity Force
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Physical Domain Across Variable Through Variable
Moist Air Absolute pressure, temperature,

specific humidity (water vapor
mass fraction), and trace gas
mass fraction

Mixture mass flow rate, mixture
energy flow rate, water vapor
mass flow rate, and trace gas
mass flow rate

Thermal Temperature Heat flow
Thermal liquid Absolute pressure and

temperature
Mass flow rate and energy flow
rate

Two-phase fluid Absolute pressure and specific
internal energy

Mass flow rate and energy flow
rate

Note In the electrical, hydraulic, mechanical rotational, mechanical translational, and thermal
domains, the product of each pair of Across and Through variables associated with a domain is power
(energy flow in watts). In all other fluid domains (gas, moist air, isothermal liquid, thermal liquid, and
two-phase fluid), as well as the magnetic domain, products of variable pairs are not power. These
result in a pseudo-bond graph.

Building the Mathematical Model
Through and Across variables associated with all the energy flows form the basis of the mathematical
model of the block.

For example, the model of a double-acting hydraulic cylinder shown in the previous illustration can be
described with a simple set of equations:

F3 = p1 · A1− p2 · A2

q1 = A1 · v3

q2 = A2 · v3

where

q1,q2 Flow rates through ports A and B, respectively (Through variables)
p1,p2 Gauge pressures at ports A and B, respectively (Across variables)
A1,A2 Piston effective areas
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F3 Rod force (Through variable)
v3 Rod velocity (Across variable)

The model could be considerably more complex, for example, it could account for friction, fluid
compressibility, inertia of the moving parts, and so on. For all these different mathematical models,
however, the element configuration (that is, the number and type of ports and the associated Through
and Across variables) would remain the same, meaning that the Physical Network approach lets you
substitute models of different levels of complexity without introducing any changes to the schematic.
For example, you can start developing your system by using the Resistive Tube block from the
Foundation library, which accounts only for friction losses. At a later stage in development, you may
want to account for fluid compressibility. You can then replace it with a Hydraulic Pipeline block,
available with Simscape Fluids™ block libraries, or, depending on your application, even with a
Segmented Pipeline block if you also need to account for fluid inertia. This modeling principle is
called incremental modeling.

Direction of Variables
Each variable is characterized by its magnitude and sign. The sign is the result of measurement
orientation. The same variable can be positive or negative, depending on the polarity of a
measurement gauge.

Elements with only two ports are characterized with one pair of variables, a Through variable and an
Across variable. Since these variables are closely related, their orientation is defined with one
direction. For example, if an element is oriented from port A to port B, it implies that the Through
variable (TV) is positive if it “flows” from A to B, and the Across variable is determined as AV = AVA –
AVB, where AVA and AVB are the element node potentials or, in other words, the values of this Across
variable at ports A and B, respectively.

This approach to the direction of variables has the following benefits:

• Provides a simple and consistent way to determine whether an element is active or passive.
Energy is one of the most important characteristics to be determined during simulation. If the
variables direction, or sign, is determined as described above, their product (that is, the energy) is
positive if the element consumes energy, and is negative if it provides energy to a system. This
rule is followed throughout the Simscape software.

• Simplifies the model description. Symbol A → B is enough to specify variable polarity for both the
Across and the Through variables.
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• Lets you apply the oriented graph theory to network analysis and design.

As an example of variables direction rules, let us consider the Ideal Force Source block. In this block,
as in many other mechanical blocks, port C is associated with the source reference point (case), and
port R is associated with the rod.

The block positive direction is from port C to port R. This means that the force is positive if it acts in
the direction from C to R, and causes bodies connected to port R to accelerate in the positive
direction. The relative velocity is determined as v = vC – vR, where vR, vC are the absolute velocities
at ports R and C, respectively, and it is negative if velocity at port R is greater than that at port C. The
power generated by the source is computed as the product of force and velocity, and is negative if the
source provides energy to the system.

Definition of positive direction is different for different blocks. Check the block source or the block
reference page if in doubt about the block orientation and direction of variables.

All the elements in a network are divided into active and passive elements, depending on whether
they deliver energy to the system or dissipate (or store) it. Active elements (force and velocity
sources, flow rate and pressure sources, etc.) must be oriented strictly in accordance with the line of
action or function that they are expected to perform in the system, while passive elements (dampers,
resistors, springs, pipelines, etc.) can be oriented either way.

Connector Ports and Connection Lines
Simscape blocks may have the following types of ports:

• Physical conserving ports — Nondirectional ports (for example, hydraulic or mechanical) that
represent physical connections and relate physical variables based on the Physical Network
approach.

• Physical signal ports — Unidirectional ports transferring signals that use an internal Simscape
engine for computations.

Each of these ports and connections between them are described in greater detail below.

Physical Conserving Ports

Simscape blocks have special conserving ports . You connect conserving ports with physical
connection lines, distinct from normal Simulink lines. Physical connection lines have no inherent
directionality and represent the exchange of energy flows, according to the Physical Network
approach.
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• You can connect conserving ports only to other conserving ports of the same type.
• The physical connection lines that connect conserving ports together are nondirectional lines that

carry physical variables (Across and Through variables, as described above) rather than signals.
You cannot connect physical lines to Simulink ports or to physical signal ports.

• Two directly connected conserving ports must have the same values for all their Across variables
(such as pressure or angular velocity).

• You can branch physical connection lines. When you do so, components directly connected with
one another continue to share the same Across variables. Any Through variable (such as flow rate
or torque) transferred along the physical connection line is divided among the multiple
components connected by the branches. How the Through variable is divided is determined by the
system dynamics.

For each Through variable, the sum of all its values flowing into a branch point equals the sum of
all its values flowing out.

Each type of physical conserving ports used in Simscape blocks uniquely represents a physical
modeling domain. For a list of port types, along with the Through and Across variables associated
with each type, see the table in “Variable Types” on page 1-3.

For improved readability of block diagrams, each Simscape domain uses a distinct default color and
line style for the connection lines. For more information, see “Domain-Specific Line Styles” on page 1-
34.

Physical Signal Ports

Physical signal ports  carry signals between Simscape blocks. You connect them with regular
connection lines, similar to Simulink signal connections. Physical signal ports are used in Simscape
block diagrams instead of Simulink input and output ports to increase computation speed and avoid
issues with algebraic loops. Physical signals can have units associated with them. You specify the
units along with the parameter values in the block dialogs, and Simscape software performs the
necessary unit conversion operations when solving a physical network.

Simscape Foundation library contains, among other sublibraries, a Physical Signals block library.
These blocks perform math operations and other functions on physical signals, and allow you to
graphically implement equations inside the physical network.

Physical signal lines also have a distinct style and color in block diagrams, similar to physical
connection lines. For more information, see “Domain-Specific Line Styles” on page 1-34.

See Also

Related Examples
• “Creating and Simulating a Simple Model” on page 1-16

More About
• “Connecting Simscape Diagrams to Simulink Sources and Scopes” on page 1-8
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Connecting Simscape Diagrams to Simulink Sources and
Scopes

Simscape block diagrams use physical signals instead of regular Simulink signals. Therefore, you
need converter blocks to connect Simscape diagrams to Simulink sources and scopes.

Use the Simulink-PS Converter block to connect Simulink sources or other Simulink blocks to the
inputs of a Physical Network diagram. You can also use it to specify the input signal units. For more
information, see the Simulink-PS Converter block reference page.

Use the PS-Simulink Converter block to connect outputs of a Physical Network diagram to Simulink
scopes or other Simulink blocks. You can also use it to specify the desired output signal units. For
more information, see the PS-Simulink Converter block reference page.

For a detailed example of using converter blocks to connect Simscape diagrams to Simulink sources
and scopes, see “Creating and Simulating a Simple Model” on page 1-16.

See Also

Related Examples
• “Creating and Simulating a Simple Model” on page 1-16
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More About
• “Physical Signal Ports” on page 1-7
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Simscape Block Libraries
In this section...
“Library Structure Overview” on page 1-10
“Accessing the Block Libraries” on page 1-11

Library Structure Overview
Simscape block library contains two libraries that belong to the Simscape product:

• Foundation library — Contains basic physical elements and building blocks, as well as sources and
sensors, organized into sublibraries according to technical discipline and function performed.

• Utilities library — Contains essential environment blocks for creating Physical Networks models.

In addition, if you have installed any of the add-on products, you will see the corresponding libraries
under the main Simscape library. Add-on products are products in the Physical Modeling family that
use Simscape platform and, as a result, share common functionality, such as physical units
management or editing modes.

Simscape Foundation libraries contain a comprehensive set of basic elements and building blocks
organized by physical domain: electrical, mechanical rotational and translational, isothermal liquid,
gas, and so on. Within each domain, the blocks are grouped into elements, sources, and sensors. In
each of the fluid domains, the Utilities sublibrary contains blocks that specify fluid properties. For
more information, see “Fluid System Modeling” on page 1-14. The Physical Signals block library lets
you perform math operations on physical signals.

Using the basic building blocks in the Foundation libraries, you can create more complex components
that span different physical domains. You can then group this assembly of blocks into a subsystem
and parameterize it to reuse and share these components.

In addition to Foundation libraries, there is also a Simscape Utilities library, which contains utility
blocks, such as:

• Solver Configuration block, which contains parameters relevant to numerical algorithms for
Simscape simulations. Each Simscape diagram (or each topologically distinct physical network in
a diagram) must contain a Solver Configuration block.

• Simulink-PS Converter block and PS-Simulink Converter block, to connect Simscape and Simulink
blocks. Use the Simulink-PS Converter block to connect Simulink outports to Physical Signal
inports. Use the PS-Simulink Converter block to connect Physical Signal outports to Simulink
inports.

• Probe block, which lets you select variables from another Simscape block in the model and output
them as Simulink signals.

For examples of using these blocks in a Simscape model, see the tutorial “Creating and Simulating a
Simple Model” on page 1-16 and the “Circuit Breaker with Probe Block” example.

You can combine all these blocks in your Simscape diagrams to model physical systems. You can also
use the basic Simulink blocks in your diagrams, such as sources or scopes. See “Connecting
Simscape Diagrams to Simulink Sources and Scopes” on page 1-8 for more information on how to do
this.
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Simscape block libraries contain a comprehensive selection of blocks that represent engineering
components such as valves, resistors, springs, and so on. These prebuilt blocks, however, may not be
sufficient to address your particular engineering needs. When you need to extend the existing block
libraries, use the Simscape language to define customized components, or even new physical
domains, as textual files. Then convert your textual components into libraries of additional Simscape
blocks that you can use in your model diagrams. For more information on how to do this, see “Typical
Simscape Language Tasks”.

Accessing the Block Libraries
You can access the blocks through the Simulink Library Browser. To display the Library Browser, type
slLibraryBrowser in the MATLAB® Command Window. Then expand the Simscape entry in the
contents tree.

When you type simscape in the MATLAB Command Window, the main Simscape library opens in a
separate window.

The Simscape library consists of two top-level libraries, Foundation and Utilities. In addition, if you
have installed any of the add-on products of the Physical Modeling family, you will see the
corresponding libraries under Simscape library, as shown in the following illustration. Some of these
libraries contain second-level and third-level sublibraries. You can expand each library by double-
clicking its icon.

 Simscape Block Libraries
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Essential Physical Modeling Techniques

Building Your Model
The rules that you must follow when building a physical model with Simscape software are described
in “Basic Principles of Modeling Physical Networks” on page 1-2. This section briefly reviews these
rules.

• Build your physical model by using a combination of blocks from the Simscape Foundation and
Utilities libraries. Simscape software lets you create a network representation of the system under
design, based on the Physical Network approach. According to this approach, each system is
represented as consisting of functional elements that interact with each other by exchanging
energy through their ports.

• Each Simscape diagram (or each topologically distinct physical network in a diagram) must
contain a Solver Configuration block from the Simscape Utilities library.

• For fluid system modeling, specify the working fluid for each topologically distinct circuit, as
described in “Specifying the Working Fluid” on page 1-14.

• To connect regular Simulink blocks (such as sources or scopes) to your physical network diagram,
use the converter blocks, as described in “Using the Physical Signal Ports” on page 1-13.

• Use the incremental modeling approach. Start with a simple model, run and troubleshoot it, then
add the desired special effects. For example, you can start developing your system by using the
Pipe (IL) block from the Foundation library, which accounts only for friction losses and fluid
compressibility. If you also need to account for fluid inertia, you can turn on this effect after your
simplified model works as expected. At a later stage in development, you may want to account for
other effects, such as pipe wall compliance, various cross-sectional geometries, elevation, or
curvature. You can then replace the Foundation library block with one of the blocks available with
the Simscape Fluids block libraries, such as Pipe (IL), Partially Filled Pipe (IL), or Pipe Bend (IL).
For all these different mathematical models, the element configuration (that is, the number and
type of ports and the associated Through and Across variables) would remain the same, meaning
that the Physical Network approach lets you substitute models of different levels of complexity
without introducing any changes to the schematic.

Simscape blocks, in general, feature both Conserving ports  and Physical Signal inports and
outports .

Using the Conserving Ports
The following rules apply to Conserving ports:

• There are different types of Physical Conserving ports used in Simscape block diagrams, such as
hydraulic, electrical, mechanical translational, mechanical rotational, and so on. Each type has
specific Through and Across variables associated with it. For more information, see “Variable
Types” on page 1-3.

• You can connect Conserving ports only to other Conserving ports of the same type. Domain-
specific line styles and colors help distinguish between different domains and facilitate the
connection process. For more information, see “Domain-Specific Line Styles” on page 1-34.

• The Physical connection lines that connect Conserving ports together are nondirectional lines that
carry physical variables (Across and Through variables, as described above) rather than signals.
You cannot connect Physical lines to Simulink ports or to Physical Signal ports.
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• Two directly connected Conserving ports must have the same values for all their Across variables
(such as voltage or angular velocity).

• You can branch Physical connection lines. When you do so, components directly connected with
one another continue to share the same Across variables. Any Through variable (such as current
or torque) transferred along the Physical connection line is divided among the multiple
components connected by the branches. How the Through variable is divided is determined by the
system dynamics.

For each Through variable, the sum of all its values flowing into a branch point equals the sum of
all its values flowing out.

Using the Physical Signal Ports
The following rules apply to Physical Signal ports:

• You can connect Physical Signal ports to other Physical Signal ports with regular connection lines,
similar to Simulink signal connections. These connection lines carry physical signals between
Simscape blocks.

• You can connect Physical Signal ports to Simulink ports through special converter blocks. Use the
Simulink-PS Converter block to connect Simulink outports to Physical Signal inports. Use the PS-
Simulink Converter block to connect Physical Signal outports to Simulink inports.

• Physical Signals can have units associated with them. Simscape block dialogs let you specify the
units along with the parameter values, where appropriate. Use the converter blocks to associate
units with an input signal and to specify the desired output signal units.

For examples of applying these rules when creating an actual physical model, see the tutorial
“Creating and Simulating a Simple Model” on page 1-16.
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Fluid System Modeling

Simscape Fluid Domains
Simscape Foundation library contains several domains for modeling fluid systems. This table provides
a summary of fluid domains, to help you select the appropriate domain for your application.

Domain Working Fluid Thermodynamic Effects
Isothermal Liquid Liquid, possibly with a small

amount of entrained air
No

Thermal Liquid Liquid Yes
Two-Phase Fluid Part liquid and part vapor Yes
Gas Gas: perfect, semiperfect, or

real (single species)
Yes

Moist Air Mixture of dry air, water vapor,
and trace gas (or of up to three
other semiperfect gas species)

Yes

Note The hydraulic domain and Hydraulic block library also let you model fluid systems that do not
account for thermodynamic effects and where the working fluid is liquid with a small amount of
entrained air. However, MathWorks recommends that you use the Isothermal Liquid library for
modeling isothermal hydraulic systems. For more information, see “Upgrading Hydraulic Models To
Use Isothermal Liquid Blocks” on page 2-9.

Specifying the Working Fluid
The rules that you must follow when building a physical model with Simscape software are described
in “Basic Principles of Modeling Physical Networks” on page 1-2. This section briefly reviews the
rules that are specific to fluid system modeling.

When modeling systems that contain fluid elements, it is very important to specify the working fluid
correctly:

• If you have isothermal liquid elements in your model, the working fluid is liquid, possibly with a
small amount of entrained air. Attach an Isothermal Liquid Properties (IL) block to each
topologically distinct circuit to define the working fluid properties. This block lets you specify
whether the liquid bulk modulus is constant or pressure-dependent. You can also specify whether
the fluid contains entrained air, and, if present, whether its amount is constant or pressure-
dependent. The default working fluid is water, with constant bulk modulus and zero entrained air.

If you have a Simscape Fluids license, you can also use the Isothermal Liquid Built-In Properties
(IL) block to specify the working fluid in a circuit. This block lets you select from a list of
predefined liquids and specify values for various fluid properties, as well as visualize fluid
properties in the circuit as a function of pressure.

• Similarly, if you have thermal liquid elements in your model, attach a Thermal Liquid Settings (TL)
block to each topologically distinct circuit to define the working fluid properties. The block takes
as inputs the necessary fluid properties, each specified as a tabulated function of pressure and
temperature.
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If you have a Simscape Fluids license, you can also use the Thermal Liquid Properties (TL) block
to specify the working fluid in a thermal liquid circuit. This block lets you select the name of the
fluid from a list that includes water, seawater, and various mixtures with uses in cooling and
deicing.

• If you have two-phase elements in your model, the working fluid is part liquid and part vapor.
Attach a Two-Phase Fluid Properties (2P) block to each topologically distinct circuit to specify the
working fluid properties. This block lets you define the properties of liquid and vapor separately,
each as a tabulated function of pressure and temperature.

• If you have gas elements in your model, default gas properties are for dry air. Attach a Gas
Properties (G) block to each topologically distinct circuit to change gas properties.

• If you have moist air elements in your model, default properties correspond to dry air, water vapor,
and carbon dioxide (the optional trace gas). Attach a Moist Air Properties (MA) block to each
topologically distinct circuit to change the air mixture properties.

• If you have hydraulic blocks in your model, the working fluid used in the hydraulic circuit defines
their global parameters, such as fluid density, fluid kinematic viscosity, and fluid bulk modulus,
specified as constant values. To specify the working fluid, attach a Custom Hydraulic Fluid block
(or a Hydraulic Fluid block, available with Simscape Fluids block libraries) to each topologically
distinct hydraulic circuit.

If you omit the fluid properties block in a circuit, the working fluid in that circuit assumes the domain
default properties. The default fluid properties for each domain correspond to the default parameter
values of the fluid properties block in the respective Foundation library.
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Creating and Simulating a Simple Model

In this section...
“Building a Simscape Diagram” on page 1-16
“Modifying Initial Settings” on page 1-21
“Running the Simulation” on page 1-22
“Adjusting the Parameters” on page 1-24

Building a Simscape Diagram
In this example, you are going to model a simple mechanical system and observe its behavior under
various conditions. This tutorial illustrates the essential steps to building a physical model on page 1-
12 and makes you familiar with using the basic Simscape blocks.

Note For time-saving techniques and advanced ways of analyzing simulation data, see the “Essential
Steps for Constructing a Physical Model” tutorial.

The following schematic represents a simple model of a car suspension. It consists of a spring and
damper connected to a body (represented as a mass), which is agitated by a force. You can vary the
model parameters, such as the stiffness of the spring, the mass of the body, or the force profile, and
view the resulting changes to the velocity and position of the body.

To create an equivalent Simscape diagram, follow these steps:

1 Open the Simulink Library Browser, as described in “Simscape Block Libraries” on page 1-10.
2 Create a new Simulink model using the Blank Model template. The software creates an empty

model in memory and displays it in a new model editor window.
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Note Alternately, you can type ssc_new at the MATLAB Command prompt, to create a new
model prepopulated with certain required and commonly used blocks. For more information, see
“Creating a New Simscape Model”.

3 By default, Simulink Editor hides the automatic block names in model diagrams. To display
hidden block names for training purposes, clear the Hide Automatic Block Names check box.
For more information, see “Manage Block Names and Ports” (Simulink).

4 Open the Simscape > Foundation Library > Mechanical > Translational Elements library.
5 Drag the Mass, Translational Spring, Translational Damper, and two Mechanical Translational

Reference blocks into the model window.
6 Orient the blocks as shown in the following illustration. To rotate a block, select it and press Ctrl

+R.

7 Connect the Translational Spring, Translational Damper, and Mass blocks to one of the
Mechanical Translational Reference blocks as shown in the next illustration.
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8 To add the representation of the force acting on the mass, open the Simscape > Foundation
Library > Mechanical > Mechanical Sources library and add the Ideal Force Source block to your
diagram.

To reflect the correct direction of the force shown in the original schematic, flip the block
orientation. With the Ideal Force Source block selected, on the Format tab at the top of the
model window, under Arrange, click Flip up-down. Connect the block's port C (for “case”) to
the second Mechanical Translational Reference block, and its port R (for “rod”) to the Mass
block, as shown below.
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9 Add the sensor to measure speed and position of the mass. Place the Ideal Translational Motion
Sensor block from the Mechanical Sensors library into your diagram and connect it as shown
below.

10 Now you need to add the sources and scopes. They are found in the Simulink libraries. Open the
Simulink > Sources library and copy the Signal Builder block into the model. Then open the
Simulink > Sinks library and copy two Scope blocks. Rename one of the Scope blocks to
Velocity and the other to Position.
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11 Every time you connect a Simulink source or scope to a Simscape diagram, you have to use an
appropriate converter block, to convert Simulink signals into physical signals and vice versa.
Open the Simscape > Utilities library and copy a Simulink-PS Converter block and two PS-
Simulink Converter blocks into the model. Connect the blocks as shown below.

12 Each topologically distinct physical network in a diagram requires exactly one Solver
Configuration block, found in the Simscape > Utilities library. Copy this block into your model
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and connect it to the circuit by creating a branching point and connecting it to the only port of
the Solver Configuration block. Your diagram now should look like this.

13 Your block diagram is now complete. Save it as mech_simple.

Modifying Initial Settings
After you have put together a block diagram of your model, as described in the previous section on
page 1-16, you need to select a solver and provide the correct values for configuration parameters.

To prepare for simulating the model, follow these steps:

1 Select a Simulink solver. In the model window, open the Modeling tab and click Model
Settings. The Configuration Parameters dialog box opens, showing the Solver pane.

Under Solver selection, set Solver to ode23t (mod.stiff/Trapezoidal).

Expand Solver details and set Max step size to 0.2.

Also note that Simulation time is specified to be between 0 and 10 seconds. You can adjust this
setting later, if needed.
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Click OK to close the Configuration Parameters dialog box.
2 Save the model.

Running the Simulation
After you've put together a block diagram and specified the initial settings for your model, you can
run the simulation.

1 The input signal for the force is provided by the Signal Builder block. The signal profile is shown
in the illustration below. It starts with a value of 0, then at 4 seconds there is a step change to 1,
and then it changes back to 0 at 6 seconds. This is the default profile.
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The Velocity scope outputs the mass velocity, and the Position scope outputs the mass
displacement as a function of time. Double-click both scopes to open them.

2
Click . The Simscape solver evaluates the model, calculates the initial conditions, and runs
the simulation. For a detailed description of this process, see “How Simscape Simulation Works”
on page 7-6. Completion of this step may take a few seconds. The message in the bottom-left
corner of the model window provides the status update.

3 Once the simulation starts running, the Velocity and Position scope windows display the
simulation results, as shown in the next illustration.
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In the beginning, the mass is at rest. Then at 4 seconds, as the input signal changes abruptly, the
mass velocity spikes in the positive direction and gradually returns to zero. The mass position at
the same time changes more gradually, on account of inertia and damping, and stays at the new
value as long as the force is acting upon it. At 6 seconds, when the input signal changes back to
zero, the velocity gets a mirror spike, and the mass gradually returns to its initial position.

You can now adjust various inputs and block parameters and see their effect on the mass velocity and
displacement.

Adjusting the Parameters
After running the initial simulation, you can experiment with adjusting various inputs and block
parameters.

Try the following adjustments:

1 Change the force profile on page 1-24.
2 Change the model parameters. on page 1-26
3 Change the mass position output units. on page 1-27

Changing the Force Profile

This example shows how a change in the input signal affects the force profile, and therefore the mass
displacement.

1 Double-click the Signal Builder block to open it.
2 Click the first vertical segment of the signal profile and drag it from 4 to 2 seconds, as shown

below. Close the block dialog.

1 Model Construction

1-24



3 Run the simulation. The simulation results are shown in the following illustration.
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Changing the Model Parameters

In our model, the force acts on a mass against a translational spring and damper, connected in
parallel. This example shows how changes in the spring stiffness and damper viscosity affect the mass
displacement.

1 Double-click the Translational Spring block. Set its Spring rate to 2000 N/m.
2 Run the simulation. The increase in spring stiffness results in smaller amplitude of mass

displacement, as shown in the following illustration.

3 Next, double-click the Translational Damper block. Set its Damping coefficient to 500
N/(m/s).

4 Run the simulation. Because of the increase in viscosity, the mass is slower both in reaching its
maximum displacement and in returning to the initial position, as shown in the following
illustration.
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Changing the Mass Position Output Units

In our model, we have used the PS-Simulink Converter block in its default parameter configuration.
Therefore, the Position scope outputs the mass displacement in the default length units, that is, in
meters. This example shows how to change the output units for the mass displacement to millimeters.

1 Double-click the PS-Simulink Converter1 block. Type mm in the Output signal unit combo box
and click OK.

2 Run the simulation. In the Position scope window, click  to autoscale the scope axes. The
mass displacement is now output in millimeters, as shown in the following illustration.

See Also

More About
• “Basic Principles of Modeling Physical Networks” on page 1-2
• “Modeling Best Practices” on page 1-28

 Creating and Simulating a Simple Model

1-27



Modeling Best Practices
In this section...
“Grounding Rules” on page 1-28
“Avoiding Numerical Simulation Issues” on page 1-31

Grounding Rules
This section contains guidelines for using domain-specific reference blocks (such as Electrical
Reference, Mechanical Translational Reference, and so on) in Simscape diagrams, along with
examples of correct and incorrect configurations.

Add reference blocks to your models according to the following rules:

• “Each Domain Requires at Least One Reference Block” on page 1-28
• “Each Circuit Requires at Least One Reference Block” on page 1-28
• “Multiple Connections to the Domain Reference Are Allowed Within a Circuit” on page 1-30

Each Domain Requires at Least One Reference Block

Within a physical network, each domain must contain at least one reference block of the appropriate
type. For example, the electromechanical model shown in the following diagram has both Electrical
Reference and Mechanical Rotational Reference blocks attached to the appropriate circuits.

Each Circuit Requires at Least One Reference Block

Each topologically distinct circuit within a domain must contain at least one reference block. Some
blocks, such as an Ideal Transformer, interface two parts of the network but do not convey
information about signal levels relative to the reference block. In the following diagram, there are
two separate electrical circuits, and the Electrical Reference blocks are required on both sides of the
Ideal Transformer block.
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The next diagram would produce an error because it is lacking an electrical reference in the circuit of
the secondary winding.

The following diagram, however, will not produce an error because the resistor defines the output
voltage relative to the ground reference.
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Multiple Connections to the Domain Reference Are Allowed Within a Circuit

More that one reference block may be used within a circuit to define multiple connections to the
domain reference:

• Electrical conserving ports of all the blocks that are directly connected to ground must be
connected to an Electrical Reference block.

• All translational ports that are rigidly clamped to the frame (ground) must be connected to a
Mechanical Translational Reference block.

• All rotational ports that are rigidly clamped to the frame (ground) must be connected to a
Mechanical Rotational Reference block.

• Conserving ports of all the fluids blocks that are referenced to atmosphere (for example, suction
ports of hydraulic pumps, or return ports of valves, cylinders, pipelines, if they are considered
directly connected to atmosphere) must be connected to the appropriate domain reference, such
as the Hydraulic Reference block.

For example, the following diagram correctly indicates two separate connections to an electrical
ground.
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Avoiding Numerical Simulation Issues
Certain configurations of physical modeling blocks can cause numerical difficulties or slow down your
simulation. When this happens, Simscape solver issues a warning in the MATLAB workspace and, if it
fails to initialize, a Simscape error.

In electrical circuits, common examples that can cause this behavior include voltage sources
connected in parallel with capacitors, inductors connected in series with current sources, voltage
sources connected in parallel, and current sources connected in series. Often, the cause of the
numerical difficulty is immediately apparent. For example, two voltage sources in parallel must have
identical voltage values; otherwise, the ports connecting them would not be physical conserving
ports. In practical circuits, topologies such as parallel voltage sources are possible, and small
difference in their instantaneous voltages is possible due to parasitic series resistance.

Note Mathematically, these topologies result in Index-2 differential algebraic equations (DAEs). Their
solution requires two differentiations of the constraint equations and, as such, it is numerically better
to avoid these component topologies where possible.

There are two approaches to resolving these difficulties. The first is to change the circuit to an
equivalent simpler one. In the example of two parallel voltage sources, one source can be simply
deleted. The same applies to two series current sources, the deleted one being replaced by a short
circuit. For some circuit topologies, however, it is not possible to find an equivalent simpler one that
resolves the problem, and the second approach is needed.

The second approach is to include small parasitic resistances in the component. In the Simscape
Foundation library, the Capacitor and Inductor blocks include such parasitic terms, so that you can
connect capacitances in parallel with voltage sources and inductors in series with current sources. If
your circuit does not have any such topologies, then you can change the default parasitic terms to
zero. Note that other blocks do not contain these parasitic terms, for example, the Mutual Inductor
block. Therefore, if you wanted to connect a mutual inductor primary in series with a current source,
you would need to introduce your own parasitic conductance across the primary winding.

 Modeling Best Practices

1-31



Example of Using a Parasitic Resistance to Avoid Numerical Simulation Issues

The following diagram models a differentiator that might be used as part of a Proportional-Integral-
Derivative (PID) controller. You can open this model by typing ssc_opamp_differentiator in the
MATLAB Command Window.

Simulate the model, and you will see that the output is minus the derivative of the input sinusoid.
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Now open the capacitor C block dialog, and set the series resistance to zero. The model now runs
very slowly and issues warnings about problems with transient initialization and step size control for
transient solve.

The cause of the problems is that the circuit effectively connects the voltage source in parallel with
the capacitor. This is because an ideal op-amp satisfies V+ = V- , where V+ and V- are the
noninverting and inverting inputs, respectively. This is an example where it is not possible to replace
the circuit with an equivalent simpler one, and a parasitic small resistance has to be introduced.
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Domain-Specific Line Styles
For improved readability of block diagrams, each Simscape domain uses a distinct default color and
line style for the connection lines. Physical signal lines also have a distinct style and color.

Domain-specific line styles apply to the block icons as well. If all the block ports belong to the same
domain, then the whole block icon assumes the line style and color of that domain. If a block has
multiple port types, such as the Rotational Electromechanical Converter, then relevant parts of the
block icon assume domain-specific line styles and colors.

To view the line styles assigned to each domain, in the Simulink Toolstrip, on the Debug tab, select
Information Overlays > Simscape Legend. The Simscape Line Styles Legend window opens,
listing the line color assigned to each registered domain, the domain name, and the domain path. If
you click a domain path link, the Simscape file for the corresponding domain opens in MATLAB
Editor. For more information on domain paths and files, see “Foundation Domains”.

To turn off domain-specific line styles for a particular model, in the Simulink Toolstrip, on the Debug
tab, select Information Overlays > Simscape Domains. This action toggles the Simscape
Domains button off, and the block diagram display changes to black connection lines and block
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icons, with physical ports visible at connection points. Repeatedly selecting the Simscape Domains
button toggles the domain-specific line styles for this model on or off.

To turn off domain-specific line styles for all models, in the MATLAB Toolstrip, click Preferences. In
the left pane of the Preferences dialog box, select Simscape, then clear the Enable domain styles
for all models check box.
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Plot Lookup Tables
You can plot lookup table data specified for the PS Lookup Table (1D) and PS Lookup Table (2D)
blocks in your model. Plotting the tables lets you visualize the data before simulating the model, to
make sure that the table is correct. The plots reflect tabulated data specified for the block, as well as
the selected interpolation and extrapolation options.

If you change the underlying table data, plotting it again opens a new window. This way, you can
compare the plots side by side and see how the block parameter values affect the resulting lookup
function.

1 Create a new model and add a PS Lookup Table (1D) block. Specify the block parameters as
shown.

2 Right-click the block in your model. From the context menu, select Foundation Library > Plot
Table.

A figure window containing the plot of the data opens.

1 Model Construction

1-36



3 In the block dialog box, change the Interpolation method parameter value to Smooth.
4 Plot the data again by right-clicking the block and selecting Foundation Library > Plot Table.

A new figure window opens.

The curve shape has changed because of the new interpolation method.
5 In the block dialog box, change the Extrapolation method parameter value to Nearest.
6 Plot the data again by right-clicking the block and selecting Foundation Library > Plot Table.

A new figure window opens.
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The curve shape within the table grid (between 1 and 5 along the x-axis) has not changed, but
the new extrapolation method affects how the curve continues outside the specified range.

Note If you change the Extrapolation method parameter value to Error, there is no
extrapolation region and the plot gets cut off at the first and last grid points.

See Also
PS Lookup Table (1D) | PS Lookup Table (2D)

1 Model Construction

1-38



Physical Signal Unit Propagation
Physical signals have units associated with the signal value. You specify the units along with the
parameter values in the block dialogs, and Simscape software performs the necessary unit conversion
operations when solving a physical network. If the signal is a vector or a matrix, all its elements have
the same unit. Unitless signals have their unit designated as 1.

Simscape blocks in the Physical Signals block library (PS blocks) allow you to graphically implement
equations inside the physical network by performing math operations and other functions on physical
signals. These blocks have untyped input and output ports, to facilitate unit propagation:

• The physical unit associated with the input signal of a PS block is propagated from the connected
output signal.

• The physical unit associated with the output signal of a PS block is determined by the unit of the
input signal and the equations inside the block. If a block performs a math operation, that
operation is performed both on the value and the unit of the input physical signal.

For example, consider a PS Gain block connected to a Current Sensor output port. Then, the physical
unit at the PS Gain input port is A. The physical unit at the PS Gain output port is the input signal
unit multiplied by the unit of the Gain parameter:

• If the Gain parameter unit is 1 (unitless), then the output signal has the same unit as the input
signal, that is, A.

• If the Gain parameter unit is V, then the output physical signal has the unit of W.

Similarly, the PS Product block multiplies both the values and units of the two input signals.

The PS Add and PS Subtract blocks perform addition and subtraction on the two input signals, and
therefore, the physical signal units at the two input ports of these blocks must be commensurate. If
the two input signals have the same unit, then the output signal unit has that unit as well. If the input
signal units are commensurate, then the output signal unit is the fundamental unit for that
dimension.
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The PS Signal Specification block lets you explicitly specify the size and unit of a physical signal. Use
this block when the signal size and unit cannot be determined implicitly, based on model connections.

See Also
PS Signal Specification

More About
• “Upgrading Models with Legacy Physical Signal Blocks” on page 1-41
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Upgrading Models with Legacy Physical Signal Blocks
In this section...
“Example of an Automatic Upgrade” on page 1-43
“Example of a Nonautomatic Upgrade” on page 1-44

In R2019a, all blocks in the Physical Signals library have been reimplemented with untyped inputs
and outputs, to facilitate signal size and unit propagation. These new blocks do not automatically
replace the respective legacy blocks in your model. To upgrade your blocks to the latest version, use
the Upgrade Advisor.

After running the Check and update outdated Simscape Physical Signal blocks check, you get a
list of links to the outdated blocks in the right pane of the Upgrade Advisor window. Clicking a link
highlights the corresponding block in the model.
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Depending on your model, the links can be divided into multiple groups:

1 Model Construction

1-42



Report Section Upgrade Action
If the model contains outdated blocks that can be
updated automatically, they are listed in the first
section of the report, followed by the Upgrade
link.

Click the Upgrade link under the list of block
links. The software automatically replaces each of
the listed blocks with its latest library version,
while keeping all the parameter values and
setting the parameter units, if appropriate. For
more information, see “Example of an Automatic
Upgrade” on page 1-43.

Sometimes, legacy blocks cannot be converted
automatically because direct conversion would
result in a compilation error or a different
answer. These blocks are listed in a table,
grouped by the underlying issue. Each row of the
table contains:

1 A list of links to blocks affected by the issue
2 Issue description
3 A Switch to new version link

Review the table that groups the blocks based on
the underlying issue. For each table row, click the
Switch to new version link to convert all blocks
listed in the first cell of this row, and then visit
the affected blocks individually to resolve the
issue. For more information, see “Example of a
Nonautomatic Upgrade” on page 1-44.

Example of an Automatic Upgrade
If the Upgrade Advisor finds legacy Physical Signal blocks that can be updated automatically, it lists
all these blocks in the first group of links, followed by the Upgrade link.

This is an example of a model that can be upgraded automatically.

The legacy PS Product block does not propagate units. However, if you replace this block with the
current version of the PS Product block, there is no issue with unit propagation. The first input signal,
from the Current Sensor, is in A. The second input signal, from the Voltage Sensor, is in V. Their
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product, the output signal, is in W, which is the expected unit at the input port S of the Controlled
Heat Flow Rate Source block.

When you click the Upgrade link, the software automatically replaces the legacy PS Product block
with its latest library version.

Example of a Nonautomatic Upgrade
Sometimes, legacy blocks cannot be converted automatically because direct conversion would result
in a compilation error or a different answer. In this case, you must inspect the affected blocks
individually to resolve the issue and ensure that the model works as intended.

This is an example of a model that cannot be upgraded automatically.

The PS Lookup Table (1D) block in this diagram contains tabulated data of torque loss, in lbf*ft, as a
function of shaft speed, in rpm.
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The output signal coming from the Ideal Rotational Motion Sensor block is in rad/s, and the input port
S of the Ideal Torque Source block, which models the torque loss, expects the unit of N/m. Legacy
Physical Signal blocks did not propagate units, therefore the model contains two PS Gain blocks, on
each side of the PS Lookup Table (1D) block, to account for unit conversion. For example, the first PS
Gain block provides the coefficient to convert rad/s to rpm.
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When you run the Check and update outdated Simscape Physical Signal blocks check on this
model, the Upgrade Advisor detects the unit mismatch but cannot determine whether the PS Gain
blocks address the issue. Therefore, it lists all three blocks in the same row of the table, followed by
the error description and the Switch to new version link.
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When you click Switch to new version, the three legacy blocks are replaced with their respective
latest versions. However, this does not resolve the unit mismatch issue. You have to address it
manually.

The new Physical Signal blocks propagate units, and therefore you no longer need the two PS Gain
blocks. The correct way to resolve the issue in this model is to delete these two blocks and set the
proper units for the PS Lookup Table (1D) block parameters.
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See Also

More About
• “Physical Signal Unit Propagation” on page 1-39
• “Model Upgrades” (Simulink)
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Isothermal Liquid Models

• “Modeling Isothermal Liquid Systems” on page 2-2
• “Isothermal Liquid Modeling Options” on page 2-4
• “Upgrading Hydraulic Models To Use Isothermal Liquid Blocks” on page 2-9
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Modeling Isothermal Liquid Systems
In this section...
“Intended Applications” on page 2-2
“Network Variables” on page 2-2
“Blocks with Fluid Volume” on page 2-2
“Reference Node and Grounding Rules” on page 2-3

Intended Applications
The Isothermal Liquid library contains basic elements, such as orifices, chambers, and
hydromechanical converters, as well as sensors and sources. Use these blocks to model hydraulic
systems where the liquid temperature is assumed constant, for applications such as:

• Hydraulic actuation of mechanical systems
• Isothermal liquid transport through pipe networks
• Hydraulic turbines for power generation

In the isothermal liquid domain, the working fluid is assumed to be at a constant temperature during
simulation. To model thermodynamic effects, use the blocks from the Thermal Liquid and Two-Phase
Fluid libraries. For more information on fluid domains available for Simscape multidomain system
modeling, see “Simscape Fluid Domains” on page 1-14.

You specify the properties of the working fluid in a connected loop by using the Isothermal Liquid
Properties (IL) block. This block lets you choose between several modeling options (see “Isothermal
Liquid Modeling Options” on page 2-4).

Network Variables
In the isothermal liquid domain, the Across variable is pressure and the Through variable is mass flow
rate. Note that these choices result in a pseudo-bond graph, because the product of pressure and
mass flow rate is not power.

Blocks with Fluid Volume
Components in the isothermal liquid domain are modeled using control volumes. The control volume
encompasses the fluid inside the component and separates it from the surrounding environment and
other components. Mass flow rates across the control surface are represented by ports. The fluid
volume inside the component is represented using an internal node, which provides the pressure
inside the component. This internal node is not visible, but you can access its parameters and
variables using Simscape data logging. For more information, see About Simulation Data Logging on
page 13-2.

The following blocks in the Isothermal Liquid library are modeled as components with a fluid volume.
In the case of Reservoir (IL), the volume is assumed to be infinitely large.

Block Gas Volume
Constant Volume Chamber (IL) Finite
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Block Gas Volume
Pipe (IL) Finite
Rotational Mechanical Converter (IL) Finite
Translational Mechanical Converter (IL) Finite
Reservoir (IL) Infinite

Other components have relatively small volumes, so that fluid entering the component spends
negligible time inside the component before exiting. These components are considered quasi-steady-
state and they do not have an internal node.

Reference Node and Grounding Rules
Unlike mechanical and electrical domains, where each topologically distinct circuit within a domain
must contain at least one reference block, isothermal liquid networks have different grounding rules.

Blocks with a fluid volume contain an internal node, which provides the pressure inside the
component and therefore serves as a reference node for the isothermal liquid network. Each
connected isothermal liquid network must have at least one reference node. This means that each
connected isothermal liquid network must have at least one of the blocks listed in “Blocks with Fluid
Volume” on page 2-2. In other words, an isothermal liquid network that contains no fluid volume is an
invalid network.

See Also

More About
• “Isothermal Liquid Modeling Options” on page 2-4
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Isothermal Liquid Modeling Options

In this section...
“Common Equation Symbols” on page 2-4
“Ideal Fluid” on page 2-5
“Constant Amount of Entrained Air” on page 2-6
“Air Dissolution Is On” on page 2-7

In the isothermal liquid domain, the working fluid is a mixture of liquid and a small amount of
entrained air. Entrained air is the relative amount of nondissolved gas trapped in the fluid. You can
control the liquid and air properties separately:

• You can specify zero amount of entrained air. Fluid with zero entrained air is ideal, that is, it
represents pure liquid.

• Mixture bulk modulus can be either constant or a linear function of pressure.
• If the mixture contains nonzero amount of entrained air, then you can select the air dissolution

model. If air dissolution is off, the amount of entrained air is constant. If air dissolution is on,
entrained air can dissolve into liquid.

Equations used to compute various fluid properties depend on the selected model.

Zero Entrained Air Constant Entrained Air Air Dissolution Is On
“Constant Bulk Modulus” on
page 2-5

“Constant Bulk Modulus” on
page 2-6

“Constant Bulk Modulus” on
page 2-7

“Bulk Modulus Is a Linear
Function of Pressure” on page
2-5

“Bulk Modulus Is a Linear
Function of Pressure” on page
2-6

“Bulk Modulus Is a Linear
Function of Pressure” on page
2-7

Use the Isothermal Liquid Properties (IL) block to select the appropriate modeling options.

Common Equation Symbols
The equations use these symbols:

p Liquid pressure
p0 Reference pressure
pmin Minimum valid pressure
pc Critical pressure
βmix Mixture isothermal bulk modulus
βL Pure liquid bulk modulus
βL0 Pure liquid bulk modulus at reference pressure p0

Kβp Proportionality coefficient when bulk modulus is a linear function of pressure
ρmix Mixture density
ρL Pure liquid density
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ρL0 Pure liquid density at reference pressure p0

ρg Air density
ρg0 Air density at reference pressure p0

θ(p) Fraction of entrained air as a function of pressure
α Volumetric fraction of entrained air in the fluid mixture
α0 Volumetric fraction of entrained air in the fluid mixture at reference pressure p0

V Total mixture volume
VL Pure liquid volume
VL0 Pure liquid volume at reference pressure p0

Vg Air volume
Vg0 Air volume at reference pressure p0

M Total mixture mass
ML Pure liquid mass
ML0 Pure liquid mass at reference pressure p0

Mg Air mass
Mg0 Air mass at reference pressure p0

n Air polytropic index

Ideal Fluid
Fluid with zero entrained air is ideal, that is, it represents pure liquid.

Constant Bulk Modulus

For this model, the defining equations are:

• Mixture density

ρmix = ρL0 ⋅ e
p− p0 /βL

• Mixture density partial derivative

∂ρmix
∂p =

ρL0
βL

e p− p0 /βL

• Mixture bulk modulus

βmix = βL

Bulk Modulus Is a Linear Function of Pressure

For this model, the defining equations are:

• Mixture density

ρmix = ρL0 1 +
Kβp
βL0

p− p0

1/Kβp
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• Mixture density partial derivative

∂ρmix
∂p =

ρL0
βL0

1 +
Kβp
βL0

p− p0

1/Kβp− 1

• Mixture bulk modulus

βmix = βL0 + Kβp p− p0

Constant Amount of Entrained Air
In practice, the working fluid contains a small amount of entrained air. This set of models assumes
that the amount of entrained air remains constant during simulation.

Constant Bulk Modulus

For this model, the defining equations are:

• Mixture density

ρmix =
ρL0 +

α0
1− α0

ρg0

e− p− p0 /βL +
α0

1− α0
p0
p

1/n

• Mixture density partial derivative

∂ρmix
∂p =

ρL0 +
α0

1− α0
ρg0

1
βL

e− p− p0 /βL + 1
n

α0
1− α0

p0
1/n

p1/n + 1

e− p− p0 /βL +
α0

1− α0
p0
p

1/n 2

• Mixture bulk modulus

βmix = βL
e− p− p0 /βL +

α0
1− α0

p0
p

1/n

e− p− p0 /βL + βL
1
n

α0
1− α0

p0
1/n

p1/n + 1

Bulk Modulus Is a Linear Function of Pressure

For this model, the defining equations are:

• Mixture density

ρmix =
ρL0 +

α0
1− α0

ρg0

1 +
Kβp
βL0

p− p0
−1/Kβp

+
α0

1− α0
p0
p

1/n

• Mixture density partial derivative
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∂ρmix
∂p =

ρL0 +
α0

1− α0
ρg0

1
βL

1 +
Kβp
βL0

p− p0
−1/Kβp− 1

+ 1
n

α0
1− α0

p0
1/n

p1/n + 1

1 +
Kβp
βL0

p− p0
−1/Kβp

+
α0

1− α0
p0
p

1/n 2

• Mixture bulk modulus

βmix = βL
1 +

Kβp
βL0

p− p0
−1/Kβp

+
α0

1− α0
p0
p

1/n

1 +
Kβp
βL0

p− p0
−1/Kβp− 1

+ βL
1
n

α0
1− α0

p0
1/n

p1/n + 1

Air Dissolution Is On
This set of models lets you account for the air dissolution effects during simulation:

• At pressures less than or equal to the reference pressure, p0 (which is assumed to be equal to
atmospheric pressure), all the air is assumed to be entrained.

• At pressures equal or higher than pressure pc, all the entrained air has been dissolved into the
liquid.

• At pressures between p0 and pc, the volumetric fraction of entrained air that is not lost to
dissolution, θ(p), is a function of the pressure.

Constant Bulk Modulus

For this model, the defining equations are:

• Mixture density

ρmix =
ρL0 +

α0
1− α0

ρg0

e− p− p0 /βL +
α0

1− α0
p0
p

1/n
θ(p)

• Mixture density partial derivative

∂ρmix
∂p =

ρL0 +
α0

1− α0
ρg0

1
βL

e− p− p0 /βL +
α0

1− α0
p0
p

1/n θ(p)
np − dθ(p)

dp

e− p− p0 /βL +
α0

1− α0
p0
p

1/n
θ(p)

2

• Mixture bulk modulus

βmix = βL
e− p− p0 /βL +

α0
1− α0

p0
p

1/n
θ(p)

e− p− p0 /βL + βL
α0

1− α0
p0
p

1/n θ(p)
np − dθ(p)

dp

Bulk Modulus Is a Linear Function of Pressure

For this model, the defining equations are:
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• Mixture density

ρmix =
ρL0 +

α0
1− α0

ρg0

1 +
Kβp
βL0

p− p0
−1/Kβp

+
α0

1− α0
p0
p

1/n
θ p

• Mixture density partial derivative

∂ρmix
∂p =

ρL0 +
α0

1− α0
ρg0

1
βL

1 +
Kβp
βL0

p− p0
−1/Kβp− 1

+
α0

1− α0
p0
p

1/n θ(p)
np − dθ(p)

dp

1 +
Kβp
βL0

p− p0
−1/Kβp

+
α0

1− α0
p0
p

1/n
θ(p)

2

• Mixture bulk modulus

βmix = βL
1 +

Kβp
βL0

p− p0
−1/Kβp

+
α0

1− α0
p0
p

1/n
θ(p)

1 +
Kβp
βL0

p− p0
−1/Kβp− 1

+ βL
α0

1− α0
p0
p

1/n θ(p)
np − dθ(p)

dp

See Also
Isothermal Liquid Properties (IL)

More About
• “Modeling Isothermal Liquid Systems” on page 2-2
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Upgrading Hydraulic Models To Use Isothermal Liquid Blocks

In this section...
“Advantages of Using Isothermal Liquid Blocks” on page 2-9
“Upgrade Considerations” on page 2-10
“Upgrading Your Models” on page 2-12

In R2020a, Isothermal Liquid blocks were introduced to model hydraulic systems where the working
fluid temperature remains constant during simulation. These blocks are intended for the same types
of applications as the Hydraulic blocks in the Foundation library, or the Hydraulics (Isothermal)
blocks in the Fluids library (which are available with a Simscape Fluids license). All of the hydraulic
blocks in your models continue to work as before. However, Isothermal Liquid library blocks provide
improved usability, increased accuracy, and enhanced simulation robustness.

Advantages of Using Isothermal Liquid Blocks
Using Isothermal Liquid library blocks to model isothermal hydraulic systems provides improved
usability, increased accuracy, and enhanced simulation robustness:

• The streamlined library is easier to use because it combines blocks that perform the same function
and adds blocks that have improved parameterization options. For example, the Laminar Leakage
(IL) block provides a choice of different cross-sectional geometries. Each of the sources can be
configured as either controlled or constant, with the Flow Rate Source (IL) block providing the
options for generating either mass flow rate or volumetric flow rate. Similarly, the Flow Rate
Sensor (IL) block lets you measure mass flow rate, volumetric flow rate, or both. The Pressure
Sensor (IL) block provides a choice of built-in measurements (including pressure difference,
absolute pressure, or gauge pressure) and does not require additional reference blocks to account
for absolute zero.

• In the Hydraulic library, only certain blocks (the ones with compressibility effect) model density as
a function of pressure, while the other blocks use constant density (which is specified as a global
parameter of the working fluid). In contrast, all of the blocks in the Isothermal Liquid library
account for fluid density being a function of pressure. The Isothermal Liquid library makes it easy
to specify your working fluid by selecting the bulk modulus model and the desired option for
modeling the amount of entrained air. These selections are then reflected in all of the block
equations, which increases the accuracy of the simulation.

• In the isothermal liquid domain, the Across and Through variables are absolute pressure and mass
flow rate (in the hydraulic domain, the variables are gauge pressure and volumetric flow rate).
Using mass flow rate as the Through variable (instead of volumetric flow rate) reduces the
potential for small errors in mass conservation to accumulate over time due to the conversion
between mass and volumetric quantities, and thus results in increased accuracy.

• Unlike the Hydraulic library blocks, the pipe and actuator blocks in the Isothermal Liquid library
account for fluid compressibility by default, which reduces the likelihood of dry nodes and makes
the simulation more robust. This also results in improved usability because you do not need to add
extra Constant Volume Chamber blocks to your model to mitigate the effect of dry nodes.

• All block equations in the Isothermal Liquid library have been optimized to provide smooth
transitions, reduce zero-crossings, and improve handling of zero flow and flow reversal. These
improvements increase simulation robustness.
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Upgrade Considerations
The Isothermal Liquid block library is structured similar to other fluid domains, such as the Thermal
Liquid library. These libraries have been streamlined to take advantage of the latest Simscape
language features, such as conditional port visibility, and to improve block usability. As a result, there
is often no one-to-one correspondence between the Isothermal Liquid and Hydraulic library blocks
and you cannot easily substitute one for another.

The hydraulicToIsothermalLiquid conversion tool facilitates model upgrades by automatically
replacing Hydraulic blocks with the equivalent Isothermal Liquid blocks, while trying to preserve the
parameter values and connections between the blocks, where possible. Currently, the tool converts
only Hydraulic blocks from the Foundation library. After the conversion process, the tool saves the
converted model under a new name and generates an HTML report that lists any issues encountered
during the conversion process. You can review the HTML report and manually fix the remaining
issues.

When the Isothermal Liquid block port locations are different from the original Hydraulic block, the
tool places the new block in a subsystem to minimize rerouting the connection lines in the block
diagram. In most cases, the subsystem port locations match the original ports of the Hydraulic block,
and therefore the original layout of the block diagram is preserved. After the conversion process, you
can move the new block out of the subsystem and manually reroute the connection lines, if desired.

Fluid Properties

The default fluid properties in the isothermal liquid domain differ from the hydraulic domain. If your
original model contains a Custom Hydraulic Fluid block, the conversion tool automatically replaces it
with an Isothermal Liquid Properties (IL) block and sets its parameter values to match the original
fluid properties. The conversion tool issues a warning only if there is no Custom Hydraulic Fluid block
anywhere in the model. However, the conversion tool does not detect situations where:

• The model uses a Hydraulic Fluid block, which is available with Simscape Fluids libraries.
Currently, the tool converts only Hydraulic blocks from the Foundation library.

• The model has multiple hydraulic circuits, and some of them do not contain a block specifying
fluid properties. If there is no Hydraulic Fluid block or Custom Hydraulic Fluid block attached to a
circuit, the hydraulic blocks in this circuit use the default fluid (which is equivalent to the fluid
defined by a Custom Hydraulic Fluid block with the default parameter values).

After running the conversion tool, inspect your model for circuits that do not contain an Isothermal
Liquid Properties (IL) block. Add this block manually and adjust its parameters, as needed. To match
the default hydraulic fluid properties, set the following block parameter values:

• Liquid density at atmospheric pressure (no entrained air): 850 kg/m^3
• Liquid isothermal bulk modulus at atmospheric pressure (no entrained air): 0.8e9 Pa
• Kinematic viscosity at atmospheric pressure: 18e-6 m^2/s
• Use the default values for other block parameters.

Pipes

The Hydraulic Resistive Tube block accounts only for the pressure drop due to the viscous friction
force and ignores the inertia and dynamic compressibility effects on the fluid pressure. In hydraulic
models, this block is often combined with Constant Volume Hydraulic Chamber and Fluid Inertia
blocks to model fluid compressibility and inertia. The conversion tool handles each block individually.

2 Isothermal Liquid Models
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However, after running the conversion tool, you can replace the whole group of blocks with a single
Pipe (IL) block and configure it to model dynamic compressibility and fluid inertia effects, as needed.

The table shows some examples of Hydraulic block configurations and matching parameterizations of
the replacement Pipe (IL) block.

Old Model New Model

Fluid dynamic compressibility — Off

Fluid dynamic compressibility — On

Fluid inertia — Off

Initial liquid pressure — 0.101325 MPa plus
the beginning value of the Pressure (gauge)
variable in the Constant Volume Hydraulic
Chamber block

 Upgrading Hydraulic Models To Use Isothermal Liquid Blocks
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Old Model New Model

Fluid dynamic compressibility — On

Fluid inertia — On

Initial liquid pressure — 0.101325 MPa plus
the beginning value of the Pressure (gauge)
variable in the Constant Volume Hydraulic
Chamber block

Initial mass flow rate from port A to port B —
the beginning value of the Flow rate variable in
the Fluid Inertia block times fluid density
(extracted from the Custom Hydraulic Fluid or
Hydraulic Fluid block connected to the circuit)

Translational Mechanical Converter

The direction of the interface force in the Translational Hydro-Mechanical Converter block is the
opposite of the force in the Translational Mechanical Converter (IL) block. In the Hydraulic block, the
positive direction of the force is from port C to port R, while in the Isothermal Liquid and other fluids
libraries, the positive interface force is from port R to port C.

If you are logging this variable, modify your code to change the sign. The name of the variable has
also changed, from f in Hydraulic block to interface_force in the Isothermal Liquid block.

Upgrading Your Models
The hydraulicToIsothermalLiquid conversion tool replaces Hydraulic blocks in your model with
equivalent Isothermal Liquid blocks. Currently, the tool converts only Hydraulic blocks from the
Foundation library.

The table lists the Hydraulic blocks in the Foundation library and the replacement Isothermal Liquid
blocks.

2 Isothermal Liquid Models

2-12



Block Substitution

Old Model New Model
Constant Area Hydraulic
Orifice

Local Restriction (IL)

Restriction type — Fixed
Constant Volume Hydraulic
Chamber

Constant Volume Chamber (IL)

Fluid Inertia This block does not map directly to Isothermal Liquid libraries. The
conversion tool comments the block out. To preserve the diagram
layout, the conversion tool places the commented out block in a
subsystem and connects the subsystem ports to bypass the block.

The conversion tool also creates a corresponding entry in the
Removed Blocks section of the HTML report.

For information on how you can model fluid inertia using the Pipe
(IL) block, see “Pipes” on page 2-10.

Hydraulic Cap This block does not map to Isothermal Liquid libraries because you
no longer need to terminate unconnected conserving ports in your
model.

The conversion tool comments the block out, removes the
connection line, and sets the Through variable at the port formerly
connected to this block to 0.

The conversion tool also creates a corresponding entry in the
Removed Blocks section of the HTML report.

If you used the Hydraulic Cap block to set the initial value for the
Pressure variable, consider modifying the initial pressure value in
the block formerly connected to the Hydraulic Cap block.

Hydraulic Piston Chamber This block does not map to Isothermal Liquid libraries because you
can model fluid compressibility directly in the mechanical converter
blocks.

The conversion tool comments the block out and creates a
corresponding entry in the Removed Blocks section of the HTML
report.

Hydraulic Reference Reservoir (IL)
Hydraulic Resistive Tube Pipe (IL)
Infinite Hydraulic Resistance Infinite Flow Resistance (IL)
Linear Hydraulic Resistance Laminar Leakage (IL)
Rotational Hydro-Mechanical
Converter

Rotational Mechanical Converter (IL)

Translational Hydro-
Mechanical Converter

Translational Mechanical Converter (IL)
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Old Model New Model
Variable Area Hydraulic Orifice Local Restriction (IL)

Restriction type — Variable
Variable Hydraulic Chamber This block does not map to Isothermal Liquid libraries because you

can model fluid compressibility directly in the mechanical converter
blocks.

The conversion tool comments the block out and creates a
corresponding entry in the Removed Blocks section of the HTML
report.

Hydraulic Flow Rate Sensor Flow Rate Sensor (IL)
Hydraulic Pressure Sensor Pressure Sensor (IL)
Hydraulic Constant Flow Rate
Source

Flow Rate Source (IL)

Source type — Constant

Flow rate type — Volumetric flow rate
Hydraulic Constant Mass Flow
Rate Source

Flow Rate Source (IL)

Source type — Constant

Flow rate type — Mass flow rate
Hydraulic Constant Pressure
Source

Pressure Source (IL)

Source type — Constant
Hydraulic Flow Rate Source Flow Rate Source (IL)

Source type — Controlled

Flow rate type — Volumetric flow rate
Hydraulic Mass Flow Rate
Source

Flow Rate Source (IL)

Source type — Controlled

Flow rate type — Mass flow rate
Hydraulic Pressure Source Pressure Source (IL)

Source type — Controlled
Custom Hydraulic Fluid Isothermal Liquid Properties (IL)

Broken Connections and Unconverted Blocks

Currently, the tool converts only Hydraulic blocks from the Foundation library. If your model contains
blocks from the Fluids > Hydraulics (Isothermal) library, the Unconverted Blocks section of the
HTML report contains a warning that unconverted blocks from Simscape Fluids were detected in the
model.

The Broken Connections section of the HTML report is also an indicator of unconverted blocks.
Broken connections result if the tool fails to convert a Hydraulic block and then tries to connect it to

2 Isothermal Liquid Models

2-14



the successfully converted Isothermal Liquid blocks. In this case, the conversion tool highlights the
broken connections in the block diagram. The Broken Connections section of the HTML report
contains hyperlinks to the Isothermal Liquid blocks with broken connections and a hyperlink to the
Interface (H-IL) block. You can use this block to restore the broken connections.

Conversion Messages

The hydraulicToIsothermalLiquid conversion tool tries to preserve the block parameter values,
where possible. Sometimes seamless automatic conversion is not possible, and you might have to
adjust the parameter values manually or consider using a different modeling option. The table lists
examples of conversion messages in the HTML report, explanations, and recommended actions. The
actual messages you get might be slightly different depending on the parameter values in your model.

Message Reason Suggested Actions
Add an Isothermal Liquid
Properties (IL) block to specify
the liquid properties. Default
properties in the Isothermal
Liquid domain differ from the
Hydraulic domain.

The model does not contain a
Custom Hydraulic Fluid block.

For details and suggested
actions, see “Fluid Properties”
on page 2-10.

Beginning value of Flow rate
removed.

The Constant Volume Hydraulic
Chamber block in the original
model lets you specify
initialization priority and target
for the Volumetric flow rate
into chamber variable. The
replacement Constant Volume
Chamber (IL) block does not
expose this variable for
initialization.

Open the block dialog box of the
original Hydraulic block and
look at the Variables tab.

If the original Hydraulic block
did not override the default
initialization priority and
beginning value for this
variable, no action is necessary.

If the Override check box is
selected for this variable, use
the Variable Viewer to compare
the initialization results.

Beginning values of Diameter
increase and Flow rate
removed.

The Constant Volume Hydraulic
Chamber block in the original
model has the Chamber wall
type parameter set to
Compliant. In this
configuration, the block lets you
specify initialization priority and
targets for the Diameter
increase and Volumetric flow
rate into chamber variables.
The replacement Constant
Volume Chamber (IL) block does
not expose these variables for
initialization.

Open the block dialog box of the
original Hydraulic block and
look at the Variables tab.

If the original Hydraulic block
did not override the default
initialization priority and
beginning values for these
variables, no action is necessary.

If the Override check box is
selected for either of these
variables, use the Variable
Viewer to compare the
initialization results.
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Message Reason Suggested Actions
Beginning values of Flow rate
and Pressure differential
removed.

Several Hydraulic blocks, such
as orifices or hydro-mechanical
converters, have the Variables
tab, where you can specify
initialization priority and targets
for the Flow rate and Pressure
differential variables. The
equivalent Isothermal Liquid
blocks do not expose these
variables for initialization.

Open the block dialog box of the
original Hydraulic block and
look at the Variables tab.

If the original Hydraulic block
did not override the default
initialization priority and
beginning values for these
variables, no action is necessary.

If the Override check box is
selected for either of these
variables, use the Variable
Viewer to compare the
initialization results.

Block uses Dead volume of 1e-4
m^3.

The Rotational Hydro-
Mechanical Converter or
Translational Hydro-Mechanical
Converter block in the original
model has the Compressibilty
parameter set to Off. When
compressibility is off, hydro-
mechanical converters do not
account for liquid volume and
do not expose the Dead volume
parameter. The equivalent
Isothermal Liquid converter
blocks log liquid volume even
when compressibility is off.

The conversion tool sets the
Dead volume parameter in the
replacement Isothermal Liquid
block to the same value as in the
original Hydraulic block. (The
original Hydraulic block used
this parameter only with
compressibility on.)

The tool also prints the
parameter value, for your
convenience. Adjust this value,
if desired.

Block uses Interface initial
displacement of 0 m.

The Translational Hydro-
Mechanical Converter block in
the original model has the
Compressibilty parameter set
to Off. Hydraulic translational
converters expose the Piston
initial position parameter only
when compressibility is on. The
equivalent Isothermal Liquid
converter blocks let you specify
initial displacement of the
interface even when
compressibility is off.

The conversion tool sets the
Interface initial
displacement parameter in the
replacement Isothermal Liquid
block to the value of the Piston
initial position parameter in
the original Hydraulic block
(even though this parameter
was not used with
compressibility off.)

The tool also prints the
parameter value for your
convenience. Adjust this value,
if desired.
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Message Reason Suggested Actions
Block uses Interface initial
rotation of 0 rad.

The Rotational Hydro-
Mechanical Converter block in
the original model has the
Compressibilty parameter set
to Off. Hydraulic rotational
converters expose the Shaft
initial angle parameter only
when compressibility is on. The
equivalent Isothermal Liquid
converter blocks let you specify
initial rotation of the interface
even when compressibility is off.

The conversion tool sets the
Interface initial rotation
parameter in the replacement
Isothermal Liquid block to the
value of the Shaft initial angle
parameter in the original
Hydraulic block (even though
this parameter was not used
with compressibility off.)

The tool also prints the
parameter value for your
convenience. Adjust this value,
if desired.

Chamber specification set to
rigid. To model flexible volume,
consider using the Simscape
Fluids Pipe (IL) block.

The Constant Volume Hydraulic
Chamber block in the original
model has the Chamber wall
type parameter set to
Compliant. The replacement
Constant Volume Chamber (IL)
block does not have this option.

If you have a Simscape Fluids
license, you can use the Pipe
(IL) block from the Fluids >
Isothermal Liquid > Pipes &
Fittings library as a
replacement.

Consider adjusting the initial
pressure in a previously
connected block.

The Hydraulic Cap block in the
original model has been
removed.

For details and suggested
actions, see Block Substitution.

Consider modeling fluid
compressibility with a
Translational Mechanical
Converter (IL) block.

The Variable Hydraulic
Chamber or Hydraulic Piston
Chamber block in the original
model has been removed.

For details and suggested
actions, see Block Substitution.

Consider modeling fluid inertia
with a Pipe (IL) block.

The Fluid Inertia block in the
original model has been
removed.

For details and suggested
actions, see Block Substitution.
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Message Reason Suggested Actions
Critical Reynolds number set to
12.

The Constant Area Hydraulic
Orifice or Variable Area
Hydraulic Orifice block in the
original model has the Laminar
transition specification
parameter set to Pressure
ratio. These Hydraulic blocks
have two options for specifying
the transition between the
laminar and turbulent regime:
by pressure ratio or by critical
Reynolds number. The
replacement Local Restriction
(IL) block does not have the
pressure ratio option.

The Local Restriction (IL) block
specifies the transition between
the laminar and turbulent
regime by the critical Reynolds
number, and the conversion tool
sets the default value of 12 for
the Critical Reynolds number
parameter.

If the original Hydraulic block
used the default Laminar flow
pressure ratio parameter value
of 0.999, no action is necessary.

If the Laminar flow pressure
ratio parameter value in the
original block was significantly
different, you might need to
adjust the Critical Reynolds
number parameter value in the
replacement block.

Maximum restriction area set to
1e10 m^2.

The Variable Area Hydraulic
Orifice block does not have a
parameter that specifies the
maximum area, the block
assumes that the maximum area
is inf. The replacement Local
Restriction (IL) block, with
Restriction type set to
Variable, requires a
Maximum restriction area
parameter value less than inf.

The conversion tool sets the
Maximum restriction area
parameter in the replacement
Local Restriction (IL) block to
an arbitrary large value, 1e10
m^2.

Adjust this value, if desired.

Original block had Specific heat
ratio of 1.4. Set Air polytropic
index to this value in an
Isothermal Liquid Properties
(IL) block.

Several Hydraulic blocks, such
as chambers or hydro-
mechanical converters, have a
Specific heat ratio parameter.
In the isothermal liquid domain,
all of the fluid properties are
defined in the Isothermal Liquid
Properties (IL) block.

The conversion tool prints the
value of the Specific heat ratio
parameter in the original block
for your convenience. Open the
Isothermal Liquid Properties
(IL) block connected to the
circuit and set its Air
polytropic index parameter to
this value.

See Also
Interface (H-IL) | hydraulicToIsothermalLiquid

More About
• “Modeling Isothermal Liquid Systems” on page 2-2

2 Isothermal Liquid Models

2-18



Thermal Liquid Models

• “Modeling Thermal Liquid Systems” on page 3-2
• “Thermal Liquid Library” on page 3-5
• “Thermal Liquid Modeling Framework” on page 3-8
• “Heat Transfer in Insulated Oil Pipeline” on page 3-11
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Modeling Thermal Liquid Systems
In this section...
“When to Use Thermal Liquid Blocks” on page 3-2
“Modeling Workflow” on page 3-2
“Establish Model Requirements” on page 3-3
“Model Physical Components” on page 3-3
“Prepare Model for Analysis” on page 3-4
“Run Simulation” on page 3-4

When to Use Thermal Liquid Blocks
The Thermal Liquid library expands the fluid modeling capability of Simscape. With this library, you
can account for thermal effects in a fluid system. For example, you can model the warming effect of
viscous dissipation in a pipe. You can also account for the temperature dependence of fluid
properties, e.g., density and viscosity.

To decide whether Thermal Liquid blocks fit your modeling needs, consider the fluid system you are
trying to represent. Other Simscape blocks, such as Hydraulic or Two-Phase Fluid, may better suit
your application. Assess the following:

• Number of phases

Is the fluid medium single phase or multiphase?
• Relevant phases

Is the fluid medium a gas, a liquid, or a multiphase mixture?
• Thermal effects

Does temperature change significantly in the time scale of the simulation? Are thermal effects
important for analysis? Are the temperature dependences of the liquid properties important?

As a rule, use Thermal Liquid blocks for fluid systems in which a single-phase liquid experiences
significant temperature changes.

Modeling Workflow
The suggested workflow for Thermal Liquid models includes four steps:

1 Establish model requirements — Define the purpose and scope of the model. Then, identify the
relevant components and interactions in the model. Use this information as a guide when
building the model.

2 Model physical components — Determine the appropriate blocks for modeling the relevant
components and interactions. Then, add the blocks to the model canvas and connect them
according to the Simscape connection rules. Specify the block parameters.

3 Prepare model for analysis — Add sensors to the model. Alternatively, configure the model for
Simscape data logging. Check the physical units of each sensed variable.

4 Run simulation — Configure the solver settings. Then, run the simulation. If necessary, refine the
model until you achieve the desired fidelity level.
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Establish Model Requirements
The foundation of a good model is a clear understanding of its purpose and requirements. What are
you trying to accomplish with the model? What are the relevant components, processes, and states?
Determine what is essential and what is not. Start simple, using a rough approximation of the
physical system as a guide. Then, iteratively add detail to reach the appropriate model fidelity for
your application.

An insulated oil pipeline buried underground provides an example. As oil flows through the pipeline,
it experiences conductive heat losses due to the cooler pipeline surroundings. Heat flows across three
material layers—pipe wall, insulant, and soil—causing oil temperature to drop. However, only
conduction across soil and insulant layers matter. A typical pipe wall is thin and conductive, and its
effect on conductive heat loss is minimal at best. Omitting this process simplifies the model and
speeds up simulation.

You also must determine the dimensions and properties of each component. During modeling, you
specify these parameters in the Simscape blocks for the components. Obtain the physical properties
of the liquid medium. Manufacturer data sheets typically provide this data. You can also use
analytical expressions to define the physical property lookup tables.

When modeling pipes, consider the impact that dynamic compressibility and flow inertia have on the
transient system behavior. If the time scale of an effect exceeds the simulation run time, the impact is
usually negligible. During modeling, turn off negligible effects to improve simulation speed.
Characteristic time scales for dynamic compressibility and flow inertia are approximately L/c and L/v,
respectively, where:

• L is the length of the pipe.
• v is the mean flow velocity through the pipe.
• c is the speed of sound in the liquid medium.

If you are unsure whether an effect is relevant to your model, simulate the model with and without
that effect. Then, compare the two simulation results. If the difference is substantial, leave that effect
in place. The result is greater model fidelity at small time scales, e.g., during transients associated
with flow reversal in a pipe.

Model Physical Components
Start by adding a Thermal Liquid Settings (TL) block to the model canvas. Use this block to provide
the physical properties of the liquid medium. This block is not strictly required, but without it the
liquid properties are reset to their default values, given for water. In the block dialog box, enter the
physical property lookup tables that you acquired during the planning stage.

Identify the appropriate blocks for representing the physical components and their interactions.
Components can be simple, requiring a single block, or custom, requiring multiple blocks typically
within a Subsystem block. Add the blocks to the model canvas and connect them according to the
Simscape connection rules.

The ssc_tl_hydraulic_fluid_warming example shows simple and custom components. The
Mass Flow Rate Source (TL) represents an ideal power source. It is a simple component. The Double-
acting cylinder subsystem block represents the mechanical part of a hydraulic actuator. It contains
two Translational Mechanical Converter (TL) blocks and is a custom component.
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Once you have connected the blocks, specify the relevant parameters. These include dimensions,
physical states, empirical correlation coefficients, and initial conditions. In Pipe (TL), Rotational
Mechanical Converter (TL), and Translational Mechanical Converter (TL) blocks, select the
appropriate setting for effects such as dynamic compressibility and flow inertia.

Note For accurate simulation results, always replace the default parameter values with data
appropriate for your model.

Prepare Model for Analysis
To analyze a model, you must set up that model for data collection. The simplest approach is to add
sensor blocks to the model. The Thermal Liquid library provides two sensor block types: one for
Through variables (mass and energy flow rates), the other for Across variables (pressure and
temperature). By using the PS-Simulink Converter block, you can specify the physical units of the
sensed variable.

An alternative approach is to use Simscape data logging. This approach, which uses MATLAB
commands instead of blocks, provides access to a broader range of model variables and parameters.
One example is the kinematic viscosity of the liquid medium inside a pipeline segment. You can
analyze this parameter using Simscape data logging but not sensor blocks.

For an overview of Simscape data logging, see “About Simulation Data Logging” on page 13-2. For
an example of how to plot logged data, see “Log and Plot Simulation Data” on page 13-8.

Run Simulation
The final step in the modeling workflow is to simulate the model. Before running simulation, check
that the numerical solver is appropriate for your model. To do this, use the Model Configuration
Parameters dialog box.

For physical models, variable-step solvers such as ode15s typically perform best. Reduce step sizes
and tolerances for greater simulation accuracy. Increase them instead for faster simulation.

Run the simulation. Plot simulation data from sensors and Simscape data logging, or process it for
further analysis. If necessary, refine the model. For example, correct simulation issues or to improve
model fidelity.

See Also

Related Examples
• “Heat Transfer in Insulated Oil Pipeline” on page 3-11

More About
• “Thermal Liquid Library” on page 3-5
• “Thermal Liquid Modeling Framework” on page 3-8
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Thermal Liquid Library

In this section...
“Why Use Thermal Liquid Blocks?” on page 3-5
“Representing Thermal Liquid Components” on page 3-5
“Specifying Thermal Liquid Medium” on page 3-6
“Modeling Multidomain Systems” on page 3-6

Why Use Thermal Liquid Blocks?
The thermal behavior of liquid systems is of interest in many engineering applications. Liquids can
store energy and release it back to their surroundings, often doing work in the process. Oil flow
through an underground pipeline and hydraulic fluid flow in an aircraft actuator are two examples.

When temperature fluctuations are negligible, liquids behave as isothermal fluids, which simplifies
the modeling process. However, when detailed thermal analysis is a goal, or when temperature
fluctuations are significant, this assumption is no longer suitable.

The Thermal Liquid library provides a modeling tool that you can use to analyze the thermal behavior
of thermal liquid systems. Three featured examples show some applications well-suited for Thermal
Liquid modeling:

• ssc_tl_oil_pipeline — Model oil temperature along an insulated underground pipeline.
• ssc_tl_hydraulic_fluid_warming — Model hydraulic fluid warming due to viscous

dissipation inside a hydraulic actuator.
• ssc_tl_water_hammer — Model the water hammer effect due to a fast-turning hydraulic valve.

Representing Thermal Liquid Components
Thermal liquid systems can range in complexity from basic to highly specialized. To model a basic
system, simple components often suffice. These are components such as chambers, pipes, pumps, and
the liquid medium itself. Simple components are often industry independent and can be modeled
using a single Thermal Liquid block. For example, you can model a pipeline segment using a single
Pipe (TL) block.

To model a specialized system, generally you use custom components. These are components that you
cannot represent by a single Thermal Liquid block. The five-way directional control valve in the
ssc_tl_hydraulic_fluid_warming example is one such component. Custom components are
often industry specific and must be modeled by grouping Thermal Liquid blocks into more complex
subsystems.

The Thermal Liquid library shares the structure of other Simscape Foundation libraries. Four
sublibraries supply the Thermal Liquid blocks: Elements, Sources, Sensors, and Utilities. With these
sublibraries you can represent the most common components of a thermal liquid system. The table
summarizes these components.
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Component Type Description Thermal Liquid Blocks
Liquid storage Store liquid in chambers or

reservoirs.
Constant Volume Chamber (TL),
Reservoir (TL), Controlled
Reservoir (TL)

Liquid transport Transport thermal liquid
through closed conduits such as
pipes.

Pipe (TL)

Flow restriction Restrict thermal liquid flow, e.g.,
due to valves or fittings.

Local Restriction (TL)

Mechanical interfaces Interface thermal liquid and
mechanical systems, e.g., to
convert liquid mechanical
energy into useful work.

Translational Mechanical
Converter (TL), Rotational
Mechanical Converter (TL)

Power sources Provide a power source to the
thermal liquid system, e.g. ,
pressure difference or mass flow
rate.

Mass Flow Rate Source (TL),
Pressure Source (TL),
Controlled Mass Flow Rate
Source (TL), Controlled
Pressure Source (TL)

Sensors Output measurement data for
dynamic variables such as mass
flow rate, energy flow rate,
pressure, and temperature.

Pressure & Temperature Sensor
(TL), Mass & Energy Flow Rate
Sensor (TL), Thermodynamic
Properties Sensor (TL),
Volumetric Flow Rate Sensor
(TL)

Thermal liquid Specify thermodynamic
properties and pressure-
temperature validity region of
thermal liquid medium.

Thermal Liquid Settings (TL)

Specifying Thermal Liquid Medium
The Thermal Liquid Settings (TL) block specifies the thermodynamic properties of the liquid medium.
These properties are assumed functions of both pressure and temperature. This assumption boosts
model fidelity, especially in models in which pressure, temperature, or both, vary widely.

The block accepts two-way lookup tables as input. These tables provide the different thermodynamic
property values at discrete pressures and temperatures. You can populate these tables using
empirical data from product data sheets or values calculated from analytical expressions.

Modeling Multidomain Systems
Thermal Liquid blocks can contain different types of conserving ports. These ports include not only
Thermal Liquid conserving ports but also thermal and mechanical conserving ports. By using these
ports, you can interface a Thermal Liquid subsystem with thermal and mechanical subsystems.

For instance, you can use the thermal conserving port of a Pipe (TL) block to model conductive heat
transfer through a pipe wall. Oil pipeline modeling is one application. The example
ssc_tl_oil_pipeline shows this approach.
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Similarly, you can use the translational mechanical conserving ports of a Translational Mechanical
Converter (TL) block to convert hydraulic pressure in a thermal liquid system into a mechanical
actuation force. Hydraulic actuator modeling is one application. The example
ssc_tl_hydraulic_fluid_warming shows this approach.

The table lists the Thermal Liquid blocks that have thermal or mechanical conserving ports. You can
use these blocks to create a multidomain model containing thermal liquid, thermal, and mechanical
subsystems.

Thermal Liquid Block Thermal Conserving Port Mechanical Conserving Port
Constant Volume Chamber (TL) ✓ ✗

Pipe (TL) ✓ ✗

Rotational Mechanical
Converter (TL)

✓ ✓

Translational Mechanical
Converter (TL)

✓ ✓

See Also

Related Examples
• “Heat Transfer in Insulated Oil Pipeline” on page 3-11

More About
• “Modeling Thermal Liquid Systems” on page 3-2
• “Thermal Liquid Modeling Framework” on page 3-8
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Thermal Liquid Modeling Framework
In this section...
“How Blocks Represent Components” on page 3-8
“How Ports Represent Interfaces” on page 3-9
“Full Flux Scheme” on page 3-9

How Blocks Represent Components
Thermal Liquid models are based on the finite volume method. This method discretizes a thermal
liquid system into multiple control volumes that interact via shared interfaces. An oil pipeline system
is one example: you can model this system as a set of pipeline segments that connect serially along
the pipeline length.

Discretization of Pipeline System

A control volume can represent a thermal liquid component, such as an oil pipeline, or a part of a
component, such as a pipeline segment. You can discretize a thermal liquid system and its
components as finely as you need, for example to increase simulation accuracy. However, the finer the
discretization, the greater the model complexity—and the slower the simulation.

Thermal Liquid blocks represent the control volume of a component using an internal node. This node
provides the liquid pressure and temperature inside the component. The node is not visible, but you
can access its parameters and variables using Simscape data logging. For more information, see
“About Simulation Data Logging” on page 13-2.

Simscape Nodes in Pipe (TL) Block
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Two physical principles govern the dynamic evolution of liquid pressure and temperature at the
internal node of a control volume: mass conservation and energy conservation. Pressure and
temperature computation is carried out for the control volume surrounding the internal node. This
control volume is the total volume of the thermal liquid component the block represents.

A second set of nodes represents the interfaces through which a finite volume can interact with its
neighbors. These nodes are visible as Simscape conserving ports, of which Thermal Liquid conserving
ports are the most important. By allowing the exchange of mass, momentum, and energy between
adjacent liquid volumes, Thermal Liquid conserving ports govern the dynamic evolution of the finite
volume as it tends to a steady state.

How Ports Represent Interfaces
Thermal Liquid conserving ports provide the liquid pressure and temperature at the interfaces they
represent. They also provide the flow rates of mass and heat, which govern the interactions between
thermal liquid components. Pressure and temperature are the Across variables of the Thermal Liquid
domain, while the flow rates are the Through variables.

Two physical principles govern the mass and heat flow rates through a Thermal Liquid conserving
port: momentum conservation and energy conservation. The mass flow rate at a port is computed
from the momentum conservation principle. The heat flow rate at a port is computed from the
thermal energy conservation principle.

The flow rate computations are carried out for half the control volume of a thermal liquid component.
The half control volume is bounded on one end by the interface the port represents, and on another
end by a parallel surface passing through the control volume centroid.

The figure shows the half control volume for flow rate computations at interface A of a pipeline
segment. Interface A corresponds to Thermal Liquid conserving port A of a Pipe (TL) block. Node C
corresponds to the internal node of the block, which is coincident with the control volume centroid.

Half Control Volume for Flow Rate Calculations

Full Flux Scheme
Blocks in the Thermal Liquid library implement a full flux scheme. Using this scheme, the net heat
flux through a Thermal Liquid conserving port contains both convective and conductive flux
contributions. By including thermal conduction in the flow direction, Thermal Liquid blocks provide
more realistic simulation of the physical system they represent.

Other advantages of the full flux scheme include enhanced simulation robustness of thermal liquid
models. This robustness becomes relevant in models where the conductive flux contribution can be
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dominant. Examples include instances of low mass flow rates and flow reversal, during which the
convective flux becomes negligible or vanishes altogether.

See Also

Related Examples
• “Heat Transfer in Insulated Oil Pipeline” on page 3-11

More About
• “Modeling Thermal Liquid Systems” on page 3-2
• “Thermal Liquid Library” on page 3-5
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Heat Transfer in Insulated Oil Pipeline
In this section...
“Oil Pipelines” on page 3-11
“Modeling Considerations” on page 3-11
“Simscape Model” on page 3-13
“Run Simulation” on page 3-14
“Run Optimization Script” on page 3-19

Oil Pipelines
Temperature plays an important role in oil pipeline design. Below the so-called cloud point, paraffin
waxes precipitate from crude oil and start to accumulate along the pipe wall interior. The waxy
deposits restrict oil flow, increasing the power requirements of the pipeline. At still-lower
temperatures—below the pour point of oil—these crystals become so numerous that, if allowed to
quiesce, oil becomes semisolid.

In cold climates, conductive heat losses through the pipe wall can be significant. To keep oil in its
favorable temperature range, pipelines include some temperature control measures. Heating stations
placed at intervals along the pipeline help to warm the oil. An insulant liner covering the pipe wall
interior helps to retard the cooling rate of the oil.

Viscous dissipation provides an additional heat source. As adjacent parcels of oil flow against each
other, they experience energy losses that appear in the form of heat. The warming effect is small, but
sufficient to at least partially offset the conductive heat losses that occur through the insulant liner.

At a certain insulation thickness, viscous dissipation exactly balances the conductive heat loss. Oil
stays at its ideal temperature throughout the pipeline length and the need for heating stations is
reduced. From a design standpoint, this insulation thickness is optimal.

In this example, you simulate an insulated oil pipeline segment. You then run an optimization script to
determine the optimal insulation thickness. This example is based on Simscape model
ssc_tl_oil_pipeline.

Modeling Considerations
The physical system in this example is an oil pipeline segment. Insulation lines the pipe wall interior,
while soil covers the pipe wall exterior, retarding conductive heat loss. The simplifying assumption is
made that the physical system is symmetric about the pipe center line.
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Flow through the pipeline segment is assumed fully developed: the velocity profile of the flowing oil
remains constant along the pipeline length. In addition, oil is assumed Newtonian and compressible:
shear stress is proportional to the shear strain, and mass density varies with both temperature and
pressure.

Oil enters the pipeline segment at a fixed temperature, TUpstream, with a fixed mass flow rate, Vdot
* rho0, where:

• Vdot is the volumetric flow rate of oil through the pipe.
• rho0 is the mass density of oil entering the pipeline segment.

Inside the pipeline segment, viscous dissipation heats the flowing oil, while thermal conduction
through the pipe wall cools it. The balance between the two processes governs the temperature of oil
exiting the pipeline segment.

The amount of heat gained through viscous dissipation depends partly on oil viscosity and mass flow
rate. The greater these quantities are, the greater the viscous heat gain is, and the warmer the oil
tends to get. The amount of heat lost via thermal conduction depends partly on the thermal
resistances of the insulation, pipe wall, and soil layer. The smaller the thermal resistances are, the
greater the conductive heat loss is, and the cooler the oil tends to get.

Using an electrical circuit analogy, the combined thermal resistance of three material layers arranged
in series equals the sum of the individual thermal resistances:

Rcombined = Rwall + Rins. + Rsoil
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Assuming the pipe wall is thin and its material is a good thermal conductor, you can safely ignore the
thermal resistance of the pipe wall. The combined thermal resistance is then simply the sum of the
insulation and soil contributions, Rins. and Rsoil.

The thermal resistance of the insulation layer is directly proportional to its thickness, (D2-D1)/2, and
inversely proportional to its thermal conductivity, kInsulant. Likewise, the thermal resistance of the
soil layer is directly proportional to its thickness, z, and inversely proportional to its thermal
conductivity, kSoil.

The figure shows the relevant dimensions of the pipeline segment. Variable names match those
specified in the model. The inner insulation diameter, D1, is also the hydraulic diameter of the
pipeline segment.

Simscape Model
The Simscape model ssc_tl_oil_pipeline represents an insulated oil pipeline segment buried
underground. To open this model, at the MATLAB command prompt, enter ssc_tl_oil_pipeline.
The figure shows the model.
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The Pipe (TL) block represents the physical system in this example, that is, the oil pipeline segment.
Port A represents its inlet and port B its outlet. Port H represents thermal conduction through the
pipe wall. The block accounts for viscous heating.

The Mass Flow Rate Source (TL) block provides the flow rate through the pipe. The Upstream block
acts as a temperature source for the pipe inlet, while the Downstream block acts as a temperature
sink at the pipe outlet.

The Conduction Insulation-Pipe and Conduction Soil-Insulation blocks represent thermal conduction
through insulant and soil layers, respectively. These blocks appear in the Simscape Thermal library as
Conductive Heat Transfer. The Soil Temperature (Temperature Source) block provides the
temperature boundary condition at the soil surface.

The Thermal Liquid Settings (TL) block provides the physical properties of the oil, expressed as two-
dimensional lookup tables containing the temperature and pressure dependence of the properties.
The table summarizes these blocks.

Block Description
Pipe (TL) Pipeline segment
Conduction Insulation-Pipe Insulant thermal conduction
Conduction Soil-Insulation Soil thermal conduction
Soil Temperature Soil temperature
Upstream Pipe inlet temperature sink
Downstream Pipe outlet temperature sink
Mass Flow Rate Source (TL) Oil mass flow rate
Thermal Liquid Settings (TL) Oil thermodynamic properties

Run Simulation
To analyze the performance of the oil pipeline segment, simulate the model. The Oil Temperature
scope plots the upstream and downstream oil temperatures. Open this scope. The insulation
thickness is near its optimal value, resulting in only a small temperature change over a 1000 meter
length. At a rate of ~0.020 K/km, oil temperature changes approximately 2 K over a 100 kilometer
length.
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Plot Physical Properties Using Data Logging

As an alternative to using sensors and scopes, you can use Simscape data logging to view how the
physical properties of oil and other system variables change during simulation.

1 Select the Pipe (TL) block.
2 On the Simscape Block tab at the top of the model window, under Review Results, click

Results Explorer.
3 In the left pane of the Simscape Results Explorer window, expand the Pipe (TL) node, which

contains logged data for the Pipe (TL) block. Then expand the A and B nodes, which correspond
to the A and B ports of the block.

4 Select variable T under node A, which is the upstream temperature of the pipe, to display its plot
in the right pane of the Simscape Results Explorer window. To plot multiple variables at once,
press the Ctrl key and select variable T under node B, which is the downstream temperature of
the pipe.
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As expected, the plots in the right pane of the Simscape Results Explorer window are equivalent
to the Oil Temperature scope results.

5 You can also use the Simscape Results Explorer to plot other physical properties of the oil as a
function of simulation time. For example, rho_I is the oil density.
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Note For more information about Simscape logging, see “About Simulation Data Logging” on page
13-2.

Simulate Effects of Changing Insulation Diameter

Experiment with different values for the insulation inner diameter. By varying this parameter, you
offset the balance between viscous dissipation, which heats the oil, and thermal conduction, which
cools the oil.

1 Open Model Explorer.
2 In the Model Hierarchy pane, select Base Workspace.
3 In the Contents pane, click the value of parameter D1.
4 Enter 0.20.

By reducing the inner diameter of the insulation layer to 0.20, you increase the insulation thickness,
slowing down heat loss through the pipe wall via thermal conduction. Run the simulation. Then, open
the Oil Temperature scope and autoscale to view full plot.
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The new plot shows an oil temperature at the pipe outlet (top curve) that significantly exceeds the
temperature at the pipe inlet (bottom line). Viscous dissipation now dominates the thermal energy
balance in the pipeline segment. The new insulation thickness poses a design problem: in a long
pipeline, a 1.1 K/km heating rate can raise the oil temperature substantially at the receiving end of
the pipeline.

Try increasing the inner diameter of the insulation layer, D1, to 0.55. By increasing this value, you
decrease the insulation thickness, accelerating heat loss through the pipe wall via thermal
conduction. Then, run the simulation. Open the Oil Temperature scope and autoscale to view the full
plot.

The resulting plot shows that the oil temperature at the pipe outlet is now significantly lower than
that at the pipe inlet. Thermal conduction clearly dominates the thermal energy balance in the
pipeline segment. This insulation thickness also poses a design issue: at a rate of 0.25K/km, oil
flowing through a long pipeline will cool down substantially.
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Run Optimization Script
The model provides an optimization script that you can run to determine the optimal inner diameter
of the pipe insulation, D1. The script iterates the model simulation at different D1 values, plotting the
rates of viscous warming and conductive cooling against each other. The intersection point between
the two curves identifies the optimal insulation thickness for the model:

1 In the model window, click Optimize to run the optimization script for the pipe insulation inner
diameter.

2 In the plot that opens, visually determine the horizontal-axis value for the intersection point
between the two curves.

The optimal inner diameter of the insulation layer is 0.37 m. Update parameter D1 to this value:

1 Open Model Explorer.
2 In the Model Hierarchy pane, click Base Workspace.
3 In the Contents pane, click the value of D1.
4 Enter 0.37.

Now, run the simulation. Open the Oil Temperature scope and autoscale to view the full plot. The
temperature difference between the inlet and the outlet is negligible.
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See Also

More About
• “Modeling Thermal Liquid Systems” on page 3-2
• “Thermal Liquid Library” on page 3-5
• “Thermal Liquid Modeling Framework” on page 3-8
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Manually Generate Fluid Property Tables

In this section...
“Fluid Property Tables” on page 4-2
“Steps for Generating Property Tables” on page 4-3
“Before Generating Property Tables” on page 4-3
“Create Fluid Property Functions” on page 4-3
“Set Property Table Criteria” on page 4-3
“Create Pressure-Normalized Internal Energy Grids” on page 4-4
“Map Grids Onto Pressure-Specific Internal Energy Space” on page 4-4
“Obtain Fluid Properties at Grid Points” on page 4-5
“Visualize Grids” on page 4-5

Fluid Property Tables
Fluid property tables provide the basic inputs to the Two-Phase Fluid Properties (2P) block. If you
have REFPROP software by the National Institute of Standards and Technology installed, you can
automatically generate these tables using the twoPhaseFluidTables function. If you obtain the
fluid properties from a different source, such as CoolProp software, you can still generate the tables
using a MATLAB script. This tutorial shows how to create a script to generate the fluid temperature
tables.

The tables must provide the fluid properties at discrete pressures and normalized internal energies.
The pressures must correspond to the table columns and the normalized internal energies to the
table rows. Setting pressure and normalized internal energy as the independent variables enables
you to specify the liquid and vapor phase property tables on separate rectangular grids using
MATLAB matrices.

The figure shows two fluid property grids in pressure-specific internal energy space (left) and
pressure-normalized internal energy space (right). If you obtain the fluid property tables on a
pressure-specific internal energy grid, you must transform that grid into its pressure-normalized
internal energy equivalent. In this tutorial, this transformation is handled by the MATLAB script that
you create.
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Steps for Generating Property Tables
The MATLAB script that you create in this tutorial performs the following tasks:

• Define property table criteria, including dimensions and pressure-specific internal energy domain.
• Create rectangular grids in pressure-normalized internal energy space.
• Map the grids onto pressure-specific internal energy space.
• Obtain the fluid properties on the pressure-specific internal energy grids.

Before Generating Property Tables
You must obtain fluid property data in pressure-specific internal energy space, e.g., through direct
calculation, from a proprietary database, or from a third-party source. In this tutorial, you create four
MATLAB functions to provide example property data. In a real application, you must replace these
functions with equivalent functions written to access real property data.

Create Fluid Property Functions
Create the following MATLAB functions. These functions provide the example property data you use
in this tutorial. Ensure that the function files are on the MATLAB path. Use the function names and
code shown:

• Name — liquidTemperature

function T = liquidTemperature(u, p) 
% Returns artificial temperature data as a function 
% of specific internal energy and pressure.
T = 300 + 0.2*u - 0.08*p;

• Name — vaporTemperature
function T = vaporTemperature(u, p)
% Returns artificial temperature data as a function 
% of specific internal energy and pressure.
T = -1000 + 0.6*u + 5*p;

• Name — saturatedLiquidInternalEnergy
function u = saturatedLiquidInternalEnergy(p)
% Returns artificial data for saturated liquid specific
% internal energy as a function of pressure.
u = sqrt(p)*400 + 150;

• Name — saturatedVaporInternalEnergy

function u = saturatedVaporInternalEnergy(p)
% Returns artificial data for saturated vapor specific
% internal energy as a function of pressure.
u = -3*p.^2 + 40*p + 2500;

Set Property Table Criteria
Start a new MATLAB script. Save the script in the same folder as the MATLAB functions you created
to generate the example fluid property data. In the script, define the criteria for the property tables.
Do this by entering the following code for the table dimensions and pressure-specific internal energy
valid ranges:
% Number of rows in the liquid property tables
mLiquid = 25;
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% Number of rows in the vapor property tables
mVapor = 25;
% Number of columns in the liquid and vapor property tables
n = 60;

% Minimum specific internal energy, kJ/kg
uMin = 30;
% Maximum specific internal energy, kJ/kg
uMax = 4000;
% Minimum pressure, MPa
pMin = 0.01;
% Maximum pressure, MPa
pMax = 15;

% Store minimum and maximum values in structure fluidTables
fluidTables.uMin = uMin;
fluidTables.uMax = uMax;
fluidTables.pMin = pMin;
fluidTables.pMax = pMax;

Create Pressure-Normalized Internal Energy Grids
Define the pressure and normalized internal energy vectors for the grid. These vectors provide the
discrete pressure and normalized internal energy values associated with each grid point. The
pressure vector is logarithmically spaced due to the wide pressure range considered in this example.
However, you can use any type of spacing that suits your data. In your MATLAB script, add this code:
% Pressure vector, logarithmically spaced
fluidTables.p = logspace(log10(pMin), log10(pMax), n);

% Normalized internal energy vectors, linearly spaced
fluidTables.liquid.unorm = linspace(-1, 0, mLiquid)';
fluidTables.vapor.unorm = linspace(1, 2, mVapor)';

Map Grids Onto Pressure-Specific Internal Energy Space
Obtain the saturated liquid and vapor specific internal energies as functions of pressure. The
saturation internal energies enable you to map the normalized internal energy vectors into equivalent
vectors in specific internal energy space. In your MATLAB script, add this code:
% Initialize the saturation internal energies of the liquid and vapor phases
fluidTables.liquid.u_sat = zeros(1, n);
fluidTables.vapor.u_sat = zeros(1, n);

% Obtain the saturation internal energies at the pressure vector values
for j = 1 : n
    fluidTables.liquid.u_sat(j) = saturatedLiquidInternalEnergy(fluidTables.p(j));
    fluidTables.vapor.u_sat(j) = saturatedVaporInternalEnergy(fluidTables.p(j));
end

This code calls two functions written to generate example data. Before using this code in a real
application, you must replace the functions with equivalent expressions capable of accessing real
data. The functions you must replace are:

• saturatedLiquidInternalEnergy
• saturatedVaporInternalEnergy

Map the normalized internal energy vectors onto equivalent specific internal energy vectors. In your
MATLAB script, add this code:
% Map pressure-specific internal energy grid onto
% pressure-normalized internal energy space
fluidTables.liquid.u = (fluidTables.liquid.unorm + 1)*...
(fluidTables.liquid.u_sat - uMin) + uMin;
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fluidTables.vapor.u = (fluidTables.vapor.unorm - 2)*...
(uMax - fluidTables.vapor.u_sat) + uMax;

Obtain Fluid Properties at Grid Points
You can now obtain the fluid properties at each grid point. The following code shows how to generate
the temperature tables for the liquid and vapor phases. Use a similar approach to generate the
remaining fluid property tables. In your MATLAB script, add this code:
% Obtain temperature tables for the liquid and vapor phases
for j = 1 : n
     for i = 1 : mLiquid
        fluidTables.liquid.T(i,j) = ...
liquidTemperature(fluidTables.liquid.u(i,j), fluidTables.p(j));
    end
    for i = 1 : mVapor
        fluidTables.vapor.T(i,j) = ...
vaporTemperature(fluidTables.vapor.u(i,j), fluidTables.p(j));
    end
end

This code calls two functions written to generate example data. Before using this code in a real
application, you must replace the functions with equivalent expressions capable of accessing real
data. The functions you must replace are:

• liquidTemperature
• vaporTemperature

To view the temperature tables generated, first run the script. Then, at the MATLAB command
prompt, enter fluidTables. MATLAB lists the contents of the fluidTables structure array.

fluidTables =

      uMin: 30
      uMax: 4000
      pMin: 0.0100
      pMax: 15
         p: [1x20 double]
    liquid: [1x1 struct]
     vapor: [1x1 struct]

To list the property tables stored in the liquidsubstructure, at the MATLAB command prompt enter
fluidTables.liquid.

  305.9992  305.9988  305.9983  305.9975  ...
  309.5548  309.7430  309.9711  310.2475  ...
  313.1103  313.4872  313.9440  314.4976  ...
  316.6659  317.2314  317.9169  318.747  ...
  ...       

Visualize Grids
To visualize the original grid in pressure-normalized internal energy space, at the MATLAB command
prompt enter this code:
% Define p and unorm matrices with the grid
% point coordinates
pLiquid = repmat(fluidTables.p, mLiquid, 1);
pVapor = repmat(fluidTables.p, mVapor, 1);

 Manually Generate Fluid Property Tables

4-5



unormLiquid = repmat(fluidTables.liquid.unorm, 1, n);
unormVapor = repmat(fluidTables.vapor.unorm, 1, n);

% Plot grid
figure;
hold on;

plot(unormLiquid, pLiquid, 'b.');
plot(unormVapor, pVapor, 'b.');

plot(zeros(1, n), fluidTables.p, 'k-');
plot(ones(1, n), fluidTables.p, 'k-');

hold off;
set(gca, 'yscale', 'log');
xlabel('Normalized Internal Energy');
ylabel('Pressure');
title('Grid in Normalized Internal Energy');

A figure opens with the pressure-normalized internal energy grid.

To visualize the transformed grid in pressure-specific internal energy space, at the MATLAB
command prompt enter this code:

% Define horizontal and vertical axes

% Plot grid
figure;
hold on;

plot(fluidTables.liquid.u, pLiquid, 'b.');
plot(fluidTables.vapor.u, pVapor, 'b.');

plot(fluidtables.liquid.u_sat, fluidTables.p, 'k-');
plot(fluidtables.vapor.u_sat, fluidTables.p, 'k-');

hold off;
set(gca, 'yscale', 'log');
xlabel('Specific Internal Energy');
ylabel('Pressure');
title('Grid in Specific Internal Energy'); 
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A figure opens with the pressure-specific internal energy grid.
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Gas System Models

• “Modeling Gas Systems” on page 5-2
• “Simple Gas Model” on page 5-11
• “Change Flow Boundary Conditions” on page 5-15
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Modeling Gas Systems
In this section...
“Intended Applications” on page 5-2
“Network Variables” on page 5-2
“Gas Property Models” on page 5-2
“Blocks with Gas Volume” on page 5-4
“Reference Node and Grounding Rules” on page 5-4
“Initial Conditions for Blocks with Finite Gas Volume” on page 5-5
“Choked Flow” on page 5-5
“Flow Reversal” on page 5-9

Intended Applications
The Gas library contains basic elements, such as orifices, chambers, and pneumatic-mechanical
converters, as well as sensors and sources. Use these blocks to model gas systems, for applications
such as:

• Pneumatic actuation of mechanical systems
• Natural gas transport through pipe networks
• Gas turbines for power generation
• Air cooling of thermal components

You specify the gas properties in the connected loop by using the Gas Properties (G) block. This block
lets you choose between three idealization levels: perfect gas, semiperfect gas, or real gas (see “Gas
Property Models” on page 5-2).

Network Variables
The Across variables are pressure and temperature, and the Through variables are mass flow rate
and energy flow rate. Note that these choices result in a pseudo-bond graph, because the product of
pressure and mass flow rate is not power.

Gas Property Models
The Gas library supports perfect gas, semiperfect gas, and real gas within the same gas domain in
order to cover a wide range of modeling requirements. The three gas property models provide trade-
offs between simulation speed and accuracy. They also enable the incremental workflow: you start
with a simple model, which requires minimal information about the working gas, and then build upon
the model when more detailed gas property data becomes available.

You select the gas property model by using the Gas Properties (G) block, which specifies the gas
properties in the connected circuit.

The following table summarizes the different assumptions for each gas property model.

• Thermal equation of state indicates the relationship of density with temperature and pressure.
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• Caloric equation of state indicates the relationship of specific heat capacity with temperature and
pressure.

• Transport properties indicate the relationship between dynamic viscosity and thermal conductivity
with temperature and pressure.

Gas Property Model Thermal Equation of
State

Caloric Equation of
State

Transport Properties

Perfect Ideal gas law Constant Constant
Semiperfect Ideal gas law 1-D table lookup by

temperature
1-D table lookup by
temperature

Real 2-D table lookup by
temperature and
pressure

2-D table lookup by
temperature and
pressure

2-D table lookup by
temperature and
pressure

The ideal gas law is implemented in the Simscape Foundation Gas library as

p = ZρRT

where:

• p is the pressure.
• Z is the compressibility factor.
• R is the specific gas constant.
• T is the temperature.

The compressibility factor, Z, is typically a function of pressure and temperature. It accounts for the
deviation from ideal gas behavior. The gas is ideal when Z = 1. In the perfect and semiperfect gas
property models, Z must be constant but it does not have to be equal to 1. For example, if you are
modeling a nonideal gas (Z ≠ 1) but the temperature and pressure of the system do not vary
significantly, you can use the perfect gas model and specify an appropriate value of Z. The following
table lists the compressibility factor Z for various gases at 293.15 K and 0.101325 MPa:

Gas Compressibility Factor
Dry Air 0.99962
Carbon Dioxide 0.99467
Oxygen 0.99930
Hydrogen 1.00060
Helium 1.00049
Methane 0.99814
Natural Gas 0.99797
Ammonia 0.98871
R-134a 0.97814

Using the perfect gas model, with the constant value of Z adjusted based on the type of gas and the
operating conditions, lets you avoid the additional complexity and computational cost of moving to
the semiperfect or real gas property model.
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The perfect gas property model is a good starting choice when modeling a gas network because it is
simple, computationally efficient, and requires limited information about the working gas. It is
correct for monatomic gases and, typically, it is sufficiently accurate for gases such as dry air, carbon
dioxide, oxygen, hydrogen, helium, methane, natural gas, and so on, at standard conditions.

When the gas network is operating near the saturation boundary or is operating over a very wide
temperature range, the working gas can exhibit mild nonideal behavior. In this case, after
successfully simulating the gas network with the perfect gas property model, consider switching to
the semiperfect gas property model.

Finally, consider switching to the real gas property model if the working gas is expected to exhibit
strongly nonideal behavior, such as heavy gases with large molecules. This model is the most
expensive in terms of computational cost and requires detailed information about the working gas,
because it uses 2-D interpolation for all properties.

Blocks with Gas Volume
Components in the gas domain are modeled using control volumes. The control volume encompasses
the gas inside the component and separates it from the surrounding environment and other
components. Gas flows and heat flows across the control surface are represented by ports. The gas
volume inside the component is represented using an internal node, which provides the gas pressure
and temperature inside the component. This internal node is not visible, but you can access its
parameters and variables using Simscape data logging. For more information, see About Simulation
Data Logging on page 13-2.

The following blocks in the Gas library are modeled as components with a gas volume. In the case of
Controlled Reservoir (G) and Reservoir (G), the volume is assumed to be infinitely large.

Block Gas Volume
Constant Volume Chamber (G) Finite
Pipe (G) Finite
Rotational Mechanical Converter (G) Finite
Translational Mechanical Converter (G) Finite
Reservoir (G) Infinite
Controlled Reservoir (G) Infinite

Other components have relatively small gas volumes, so that gas entering the component spends
negligible time inside the component before exiting. These components are considered quasi-steady-
state and they do not have an internal node.

Reference Node and Grounding Rules
Unlike mechanical and electrical domains, where each topologically distinct circuit within a domain
must contain at least one reference block, gas networks have different grounding rules.

Blocks with a gas volume contain an internal node, which provides the gas pressure and temperature
inside the component and therefore serves as a reference node for the gas network. Each connected
gas network must have at least one reference node. This means that each connected gas network
must have at least one of the blocks listed in “Blocks with Gas Volume” on page 5-4. In other words, a
gas network that contains no gas volume is an invalid gas network.
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The Foundation Gas library contains the Absolute Reference (G) block but, unlike other domains, you
do not use it for grounding gas circuits. The purpose of the Absolute Reference (G) block is to provide
a reference for the Pressure & Temperature Sensor (G). If you use the Absolute Reference (G) block
elsewhere in a gas network, it will trigger a simulation assertion because gas pressure and
temperature cannot be at absolute zero.

Initial Conditions for Blocks with Finite Gas Volume
This section discusses the specific initialization requirements for blocks modeled with finite gas
volume. These blocks are listed in “Blocks with Gas Volume” on page 5-4.

The state of the gas volume evolves dynamically based on interactions with connected blocks via
mass and energy flows. The time constants depend on the compressibility and thermal capacity of the
gas volume.

The state of the gas volume is represented by differential variables at the internal node of the block.
As differential variables, they require initial conditions to be specified prior to the start of simulation.
The dialog box of each block modeled with finite gas volume has a Variables tab, which lists three
variables:

• Pressure of gas volume
• Temperature of gas volume
• Density of gas volume

By default, Pressure of gas volume and Temperature of gas volume have high priority, with
target values equal to the standard condition (0.101325 MPa and 293.15 K). You can adjust the
target values to represent the appropriate initial state of the gas volume for the block. Density of
gas volume has the default priority None because only the initial conditions of two of the three
variables are needed to completely determine the initial state of the gas volume. If desired, an
alternative way to specify the initial conditions is to change Density of gas volume to high priority
with an appropriate target value, and then change either Pressure of gas volume or Temperature
of gas volume to a priority of none.

It is important that only two of the three variables have their priorities set to High for each block
with a finite gas volume. Placing high-priority constraints on all three variables results in over-
specification, with the solver unable to find an initialization solution that satisfies the desired initial
values. Conversely, placing high-priority constraint only on one variable makes the system under-
specified, and the solver might resolve the variables with arbitrary and unexpected initial values. For
more information on variable initialization and dealing with over-specification, see “Initialize
Variables for a Mass-Spring-Damper System” on page 8-6.

In blocks that are modeled with an infinitely large gas volume, the state of the gas volume is assumed
quasisteady and there is no need to specify an initial condition.

Choked Flow
Gas flow through Local Restriction (G), Variable Local Restriction (G), or Pipe (G) blocks can become
choked. Choking occurs when the flow velocity reaches the local speed of sound. When the flow is
choked, the velocity at the point of choking cannot increase any further. However, the mass flow rate
can still increase if the density of the gas increases. This can be achieved, for example, by increasing
the pressure upstream of the point of choking. The effect of choking on a gas network is that the
mass flow rate through the branch containing the choked block depends completely on the upstream
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pressure and temperature. As long as the choking condition is maintained, this choked mass flow rate
is independent of any changes occurring in the pressure downstream.

The following model illustrates the choked flow. In this model, the Ramp block has a slope of 0.005
and the start time of 10. The Simulink-PS Converter block has Input signal unit set to Mpa. All other
blocks have default parameter values. Simulation time is 50 s. When you simulate the model, the
pressure at port A of the Local Restriction (G) block increases linearly from atmospheric pressure,
starting at 10 s. The pressure at port B is fixed at atmospheric pressure.

The following illustration shows the logged simulation data for the Local Restriction (G) block. The
Mach number at the restriction (Mach_R) reaches 1 at around 20 s, indicating that the flow is
choked. The mass flow rate (mdot_A) before the flow is choked follows the typical quadratic behavior
with respect to an increasing pressure difference. However, the mass flow rate after the flow is
choked becomes linear because the choked mass flow rate depends only on the upstream pressure
and temperature, and the upstream pressure is increasing linearly.
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The fact that the choked mass flow rate depends only on the upstream conditions can cause an
incompatibility with a Mass Flow Rate Source (G) or a Controlled Mass Flow Rate Source (G)
connected downstream of the choked block. Consider the model shown in the next illustration, which
contains the Controlled Mass Flow Rate Source (G) block instead of the Controlled Pressure Source
(G).

If the source commanded an increasing mass flow rate from left to right through the Local Restriction
(G), the simulation would succeed even if the flow became choked because the Controlled Mass Flow
Rate Source (G) would be upstream of the choked block. However, in this model the Gain block
reverses the flow direction, so that the Controlled Mass Flow Rate Source (G) is downstream of the
choked block. The pressure upstream of the Local Restriction (G) is fixed at atmospheric pressure.
Therefore, the choked mass flow rate in this situation is constant. As the commanded mass flow rate
increases, eventually it will become greater than this constant value of choked mass flow rate. At this
point, the commanded mass flow rate and the choked mass flow rate cannot be reconciled and the
simulation fails. Viewing the logged simulation data in the Simscape Results Explorer shows that
simulation fails just at the point when the Mach number reaches 1 and the flow becomes choked.
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In general, if a model is likely to choke, use pressure sources rather than mass flow rate sources. If a
model contains mass flow rate source blocks and simulation fails, use the Simscape Results Explorer
to inspect the Mach number variables in all Local Restriction (G), Variable Local Restriction (G), and
Pipe (G) blocks connected along the same branch as the mass flow rate source. If the simulation
failure occurs when the Mach number reaches 1, it is likely that there is a downstream mass flow rate
source trying to command a mass flow rate greater than the possible choked mass flow rate.

The Mach number variable for the restriction blocks is called Mach_R. The Pipe (G) block has two
Mach number variables, Mach_A and Mach_B, representing the Mach number at port A and port B,
respectively.

Flow Reversal
The flow of gas through the circuit carries energy from one gas volume to another gas volume.
Therefore, the energy flow rate between two connected blocks depends on the direction of flow. If the
gas flows from block A to block B, then the energy flow rate between the two blocks is based on the
specific total enthalpy of block A. Conversely, if the gas flows from block B to block A, then the energy
flow rate between the two blocks is based on the specific total enthalpy of block B. To smooth the
transition for simulation robustness, the energy flow rate also includes a contribution based on the
difference in the specific total enthalpies of the two blocks at low mass flow rates. The smoothing
region is controlled by the Gas Properties (G) block parameter Mach number threshold for flow
reversal.

A consequence of this approach is that the temperature of a node between two connected blocks
represents the temperature of the gas volume upstream of that node. If there are two or more
upstream flow paths merging at the node, then the temperature at the node represents the weighted
average temperature based on the ideal mixing of the merging gas flows.
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Simulation robustness can be challenging for models that exhibit quick flow reversals and large
temperature differences between blocks. Quick flow reversals may be a result of having low flow
resistances (for example, short pipes) between large gas volumes. Large temperature differences may
be a result of the energy added by sources to maintain large pressure differences in a model with
little heat dissipation. In these models, it may be necessary to increase the Mach number threshold
for flow reversal parameter value to avoid simulation failure.

See Also

Related Examples
• “Simple Gas Model” on page 5-11
• “Change Flow Boundary Conditions” on page 5-15
• Choked Flow in Gas Orifice
• Pneumatic Actuation Circuit
• Pneumatic Motor Circuit
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Simple Gas Model
In this example, you create a simple open-loop gas model. The model consists of a local restriction
between two reservoirs. The local restriction represents a valve or an orifice. The reservoir blocks set
up the boundary conditions for the local restriction.

Reservoir blocks are useful for setting up pressure and temperature boundary conditions. If you want
the pressure and temperature boundary conditions to change over time, use controlled reservoir
blocks.

To open the completed model, in the MATLAB Command Window, type ssc_gas_tutorial_step1.

To create this model:

1 In the MATLAB Command Window, type:

ssc_new

Note By default, Simulink Editor hides the automatic block names in model diagrams. To display
hidden block names for training purposes, clear the Hide Automatic Block Names check box.
For more information, see “Manage Block Names and Ports” (Simulink).

2 Delete the Simulink-PS Converter block.
3 To reduce diagram clutter, right-click the PS-Simulink Converter block and, from the context

menu, select Format > Show Block Name > Off.
4 Add the following blocks.

Block Name Library Quantity
Local Restriction (G) Gas/Elements 1
Reservoir (G) Gas/Elements 2
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Block Name Library Quantity
Gas Properties (G) Gas/Utilities 1
Mass & Energy Flow Rate Sensor (G) Gas/Sensors 1

5 Change the reservoir block names and connect the blocks as shown in the diagram.

6 Leave the Downstream Reservoir block at standard atmospheric conditions.

7 Change the Upstream Reservoir block to have a specified pressure of 0.12 MPa and temperature
of 400 K.
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8 Simulate the model. The mass flow rate through the restriction is approximately 0.13 kg/s.
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See Also

Related Examples
• “Change Flow Boundary Conditions” on page 5-15

More About
• “Modeling Gas Systems” on page 5-2
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Change Flow Boundary Conditions
In the “Simple Gas Model” on page 5-11 tutorial, you created a simple open-loop gas model. This
example shows how to modify this model by changing the gas flow boundary conditions without
affecting temperature. To open the completed model, in the MATLAB Command Window, type
ssc_gas_tutorial_step2.

To change the upstream boundary conditions from specified pressure and temperature to specified
mass flow rate and temperature:

1 Open the model created in the “Simple Gas Model” on page 5-11 tutorial, by typing
ssc_gas_tutorial_step1.

2 Change the Upstream Reservoir block back to Atmospheric pressure, but keep the
temperature of 400 K.

3 Add a Mass Flow Rate Source (G) block upstream from the local restriction. Set the Mass flow
rate parameter 0.15 kg/s.

 Change Flow Boundary Conditions
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4 Simulate the model. The mass flow rate through the restriction is now 0.15 kg/s.
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5 To measure the absolute pressure and temperature upstream of the local restriction, add a
Pressure & Temperature Sensor (G) block and connect an Absolute Reference (G) block to the B
node of the sensor. Duplicate the converter-scope block pair to add the Pressure and
Temperature scopes to the model, as shown in the diagram.
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6 Simulate the model. To drive 0.15 kg/s of gas through the restriction, the Mass Flow Rate Source
(G) block increased the pressure from atmospheric (as specified by the Upstream Reservoir
block) to almost 0.13 MPa.
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The temperature upstream of the restriction is approximately 427 K, not 400 K (as specified by
the Upstream Reservoir block).
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7 The reason for the temperature increase is that the source needs to do work, to bring the
pressure up and drive the desired flow rate through the system, which adds energy to the gas.
This way, the source can be treated as an idealized compressor or pump. However, our intent is
just to specify an upstream boundary condition of 400 K and 0.15 kg/s, regardless of whether
there is actually a compressor upstream or not. Therefore, in the Mass Flow Rate Source (G)
block dialog, switch the Power added parameter to None.
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8 Simulate the model. The temperature upstream of the restriction is now 400 K.
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See Also

Related Examples
• “Simple Gas Model” on page 5-11

More About
• “Modeling Gas Systems” on page 5-2
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Moist Air System Models

• “Modeling Moist Air Systems” on page 6-2
• “Modeling Moisture and Trace Gas Levels” on page 6-13
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Modeling Moist Air Systems
In this section...
“Intended Applications” on page 6-2
“Network Variables for Moist Air Domain” on page 6-3
“Moist Air Properties” on page 6-3
“Humidity and Trace Gas Property Definitions” on page 6-4
“Blocks with Moist Air Volume” on page 6-5
“Reference Node and Grounding Rules” on page 6-6
“Initial Conditions for Blocks with Finite Moist Air Volume” on page 6-6
“Saturation and Condensation” on page 6-7
“Choked Flow” on page 6-9

Intended Applications
The Moist Air library contains basic elements, such as reservoirs, chambers, and pneumatic-
mechanical converters, as well as sensors and sources. Use these blocks to model HVAC systems,
environmental control systems, and other similar applications.

Relevant industries include automotive, aerospace, building. The key aspect of these applications is
the need to keep track of humidity levels in different parts of the model over time. The moist air
domain is a two-species gas domain, where the species are air and water vapor. Furthermore, the
water vapor can condense out of the system. This effect is important to HVAC applications because
latent heat of water condensation affects the thermodynamics of the fluid flow.

The moist air mixture is composed of dry air and water vapor. Trace gas is an optional third species in
the moist air mixture. Example of the trace gas usage is to track carbon dioxide and pollutants such
as nitrogen oxides (NOx). You specify the moist air properties in the connected loop by using the
Moist Air Properties (MA) block. This block also gives you several options for modeling trace gas
properties. You increase and decrease levels of moisture and trace gas in the air mixture by using the
blocks in the Moisture & Trace Gas Sources library (see “Modeling Moisture and Trace Gas Levels”
on page 6-13).

All gas species in the mixture are assumed to be semiperfect gas. This means that pressure,
temperature, and density obey the ideal gas law. Other properties―specific enthalpy, specific heat,
dynamic viscosity, and thermal conductivity―are functions of temperature only.

Use the Moist Air domain and library to perform the following tasks:

• Develop requirements of an HVAC system for an environment, such as a building, automobile, or
aircraft

• Ensure acceptable temperature, pressure, humidity, and condensation within the environment
• Determine capacity of an HVAC system to match heating, cooling, and dehumidification

requirements
• Analyze HVAC system performance, efficiency, and cost
• Validate HVAC system model against test data
• Design and simulate HVAC components and tune component models to test rig data
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• Simulate models including an HVAC system, environment model, and controller
• Design controllers for valves, fans, and compressors to ensure safe and optimal operation
• Perform HIL testing

Network Variables for Moist Air Domain
The Across variables are pressure, temperature, specific humidity (water vapor mass fraction), and
trace gas mass fraction. The Through variables are mixture mass flow rate, mixture energy flow rate,
water vapor mass flow rate, and trace gas mass flow rate. Note that these choices result in a pseudo-
bond graph, because the product of Across and Through variables is not power.

There is a separate domain for modeling moisture and trace gas levels in moist air systems. For more
information, see “Moist Air Source Domain” on page 6-13.

Moist Air Properties
The default fluid properties for the moist air library correspond to dry air, water vapor, and carbon
dioxide (the optional trace gas). However, you can modify the fluid properties in the Moist Air
Properties (MA) block to model mixtures of other gases and vapors. You can replace dry air and
carbon dioxide with other gas species. You can also change water vapor to another condensing vapor
(or even to another noncondensing gas species, by supplying large enough values for the saturation
pressure, so that it would never reach saturation during simulation). In this way, you can model any
three-species gas mixture.

All gas species in the mixture are assumed to be semiperfect gas. This means that pressure p,
temperature T, and density ρ of the constituents obey the ideal gas law:

pa = ρaRaT,
pw = ρwRwT,
pg = ρgRgT,

where R is the specific gas constant. Subscripts a, w, and g indicate dry air, water vapor, and trace
gas, respectively.

Dalton’s law applies to ideal gases:

p = pa + pw + pg .

Therefore, the mixture also obeys the ideal gas law:

p = ρRT,

where:

ρ = ρa + ρw + ρg,
R = xaRa + xwRw + xgRg .

xa, xw, and xg are mass fractions of dry air, water vapor, and trace gas, respectively.

Other properties of each constituent are assumed to be functions of temperature only:
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• ha(T), hw(T), hg(T) ― Specific enthalpy of dry air, water vapor, and trace gas, respectively.
• μa(T), μw(T), μg(T) ― Dynamic viscosity of dry air, water vapor, and trace gas, respectively.
• ka(T), kw(T), kg(T) ― Thermal conductivity of dry air, water vapor, and trace gas, respectively.

For ideal gases, the enthalpy of mixing is zero. Therefore, the mixture specific enthalpy is a
combination of the constituent specific enthalpy based on their mass fractions:

h = xaha T + xwhw T + xghg T .

You can compute the entropy of mixing from the mole fractions:

Δsmix = − xaRaln ya + xwRwln yw + xgRgln yg ,

where ya, yw, and yg are mole fractions of dry air, water vapor, and trace gas, respectively.

Therefore, the mixture specific entropy is

s = xasa + xwsw + xgsg + Δsmix .

Humidity and Trace Gas Property Definitions
The equations describing humidity and trace gas properties use these symbols and property
definitions. Subscripts a, w, and g indicate the properties of dry air, water vapor, and trace gas,
respectively. Subscript ws indicates water vapor at saturation.

Symbol Property Definition
p Pressure Pressure of the moist air mixture (as opposed to the

partial pressure of water vapor or partial pressure of
trace gas).

T Temperature The dry-bulb temperature, which is the temperature in
the common thermodynamic sense. (The wet-bulb
temperature is a different quantity, which measures the
moisture level.)

R Specific gas constant Universal gas constant divided by the molar mass of the
species. Specific gas constant of the mixture is

R = xaRa + xwRw + xgRg .
φw Relative humidity Moles of water vapor as a fraction of the moles of water

vapor needed to saturate at the same temperature.
Water vapor saturation pressure is a property of water
and is a function of temperature only, pws(T). The ideal
gas law (due to the assumed semiperfect gas) means
that mole fraction is equivalent to partial pressure
fraction. The mole fraction yw cannot be greater than 1.
Therefore, at high temperature or low pressure, it may
not be possible to achieve relative humidity of 1.

φw =
yw
yws T

=
ywp

pws T
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Symbol Property Definition
xw Specific humidity Mass of water vapor as a fraction of the total mass of

the moist air mixture. It is another term for water vapor
mass fraction. It may not be possible to achieve specific
humidity of 1 due to saturation.

xw =
Mw
M =

ṁw
ṁ

yw Water vapor mole
fraction

Moles of water vapor as a fraction of the total moles of
the moist air mixture. It may not be possible to achieve
water vapor mole fraction of 1 due to saturation.

yw =
Nw
N =

pw
p

rw Humidity ratio Ratio of mass of water vapor to mass of dry air and
trace gas. For conditions in typical HVAC applications,
it is close to the specific humidity.

rw =
Mw

Ma + Mg

ρw Absolute humidity Mass of water vapor over the volume of the moist air
mixture. It is another term for water vapor density.

ρw =
Mw
V

xg Trace gas mass
fraction

Mass of trace gas as a fraction of the total mass of the
moist air mixture.

xg =
Mg
M =

ṁg
ṁ

yg Trace gas mole
fraction

Moles of trace gas as a fraction of the total moles of the
moist air mixture.

yg =
Ng
N =

pg
p

Water vapor mole fraction is related to specific humidity (that is, to mass fraction) as follows:

yw =
Rw
R xw .

Trace gas mole fraction is related to trace gas mass fraction as follows:

yg =
Rg
R xg .

Blocks with Moist Air Volume
Components in the moist air domain are modeled using control volumes. A control volume
encompasses the moist air inside the component and separates it from the surrounding environment
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and other components. Air flows and heat flows across the control surface are represented by ports.
The moist air volume inside the component is represented using an internal node. This internal node
is not visible, but you can access its parameters and variables using Simscape data logging. For more
information, see About Simulation Data Logging on page 13-2.

For a moist air volume, you must specify the pressure, temperature, moisture level, and trace gas
level. For more information, see “Initial Conditions for Blocks with Finite Moist Air Volume” on page
6-6.

The following blocks in the Moist Air library are modeled as components with a moist air volume. In
the case of Controlled Reservoir (MA) and Reservoir (MA) blocks, the volume is assumed to be
infinitely large.

Block Gas Volume
Constant Volume Chamber (MA) Finite
Pipe (MA) Finite
Rotational Mechanical Converter (MA) Finite
Translational Mechanical Converter (MA) Finite
Reservoir (MA) Infinite
Controlled Reservoir (MA) Infinite

Other components have relatively small moist air volumes, so that the air mixture entering the
component spends negligible time inside the component before exiting. These components are
considered quasi-steady-state and they do not have an internal node.

Reference Node and Grounding Rules
Unlike mechanical and electrical domains, where each topologically distinct circuit within a domain
must contain at least one reference block, moist air networks have different grounding rules.

Blocks with a moist air volume contain an internal node, which provides the pressure, temperature,
moisture level, and trace gas level inside the component and therefore serves as a reference node for
the moist air network. Each connected moist air network must have at least one reference node. This
means that each connected moist air network must have at least one of the blocks listed in “Blocks
with Moist Air Volume” on page 6-5. In other words, a moist air network that contains no air volume
is an invalid network.

The Foundation Moist Air library contains the Absolute Reference (MA) block but, unlike other
domains, you do not use it for grounding moist air circuits. The purpose of the Absolute Reference
(MA) block is to provide a reference for the Pressure & Temperature Sensor (MA) block. If you use
the Absolute Reference (MA) block elsewhere in a moist air network, it triggers a simulation assertion
because air mixture pressure and temperature cannot be at absolute zero.

Initial Conditions for Blocks with Finite Moist Air Volume
This section discusses the specific initialization requirements for blocks modeled with finite moist air
volume. These blocks are listed in “Blocks with Moist Air Volume” on page 6-5.

The fluid states of a moist air volume are pressure, temperature, moisture level, and trace gas level.
These fluid states evolve dynamically based on the mixture mass conservation, water vapor mass
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conservation, trace gas mass conservation, and mixture energy conservation. Therefore, it is
necessary to specify initial conditions for these blocks, to define the initial fluid states. The dialog box
of each block modeled with finite moist air volume has a Variables tab, which lets you specify the
initial conditions. To ensure consistent initial conditions, specify high priority targets for four
variables:

• Pressure of moist air volume
• Temperature of moist air volume
• One of the variables representing the moisture level:

• Relative humidity of moist air volume
• Specific humidity of moist air volume
• Water vapor mole fraction of moist air volume
• Humidity ratio of moist air volume

• One of the variables representing the trace gas level:

• Trace gas mass fraction of moist air volume
• Trace gas mole fraction of moist air volume

It is important that only four variables, as described, have their priorities set to High for each block
with a finite moist air volume. Placing high-priority constraints on additional variables results in
overspecification, with the solver being unable to find an initialization solution that satisfies the
desired initial values. Set the priority of remaining variables to None. You can use the equations in
“Humidity and Trace Gas Property Definitions” on page 6-4 and “Trace Gas Modeling Options” on
page 6-13 to convert values from one moisture or trace gas measure to another. For more
information on variable initialization and dealing with overspecification, see “Initialize Variables for a
Mass-Spring-Damper System” on page 8-6.

The fluid states of moist air volume in these blocks are reported by the physical signal output port F.
Connect port F to the Measurement Selector (MA) block to extract the measurements of pressure,
temperature, moisture level, and trace gas level during simulation.

In blocks that are modeled with an infinitely large moist air volume, the state of the volume is
assumed quasisteady and there is no need to specify an initial condition. Instead, these blocks
represent boundary conditions for the moist air network.

Saturation and Condensation
Blocks with finite moist air volume (listed in “Blocks with Moist Air Volume” on page 6-5) can become
saturated when the relative humidity φw reaches the relative humidity at saturation φws. The
saturated state represents the maximum amount of moisture that the moist air volume can hold at
that pressure and temperature. Any additional moisture condenses into liquid water.

By definition, the relative humidity at saturation is 1. However, you can specify a different value for
φws to model some empirical effect or other phenomenon. When φws > 1, water vapor partial pressure
can become greater than the water vapor saturation pressure. When φws < 1, moisture can condense
before the water vapor partial pressure reaches the water vapor saturation pressure.

Condensation does not occur instantaneously. Consequently, it is possible for φw to be slightly greater
than φws. The condensation time constant represents the characteristic time it takes to condense out
enough moisture to bring φw back to φws. A larger value of the time constant causes φw to exceed φws
to a greater degree, but is more numerically robust.
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Moisture that condenses is considered to have left the moist air network, therefore, the mass and
energy of condensed liquid water is subtracted from the moist air volume. The rate of condensation is
reported by the physical signal output port W. If you want to model the flow of the condensed liquid
water, you can use the rate of condensation as an input for another fluid network (hydraulic, thermal
liquid, two-phase fluid, or another moist air network). The following example shows how to use the
thermal liquid network to model the condensate that drains from a Constant Volume Chamber (MA)
through a pipe.

If you have a Simscape Fluids license, you can also use the Tank (TL) block to model a condensation
collection tray. The liquid level in the tank represents the amount of condensation collected but not
yet drained from the tank.
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Choked Flow
Moist air flow through Local Restriction (MA), Variable Local Restriction (MA), or Pipe (MA) blocks
can become choked. Choking occurs when the flow velocity reaches the local speed of sound. When
the flow is choked, the velocity at the point of choking cannot increase any further. However, the
mass flow rate can still increase if the density of the air mixture increases. This can be achieved, for
example, by increasing the pressure upstream of the point of choking. The effect of choking on a
moist air network is that the mass flow rate through the branch containing the choked block depends
completely on the upstream pressure and temperature. As long as the choking condition is
maintained, this choked mass flow rate is independent of any changes occurring in the pressure
downstream.

The following model illustrates the choked flow. In this model, the Ramp block has a slope of 0.005
and the start time of 10. The Simulink-PS Converter block has Input signal unit set to Mpa. All other
blocks have default parameter values. Simulation time is 50 s. When you simulate the model, the
pressure at port A of the Local Restriction (MA) block increases linearly from atmospheric pressure,
starting at 10 s. The pressure at port B is fixed at atmospheric pressure.
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The following two plots show the logged simulation data for the Local Restriction (MA) block. The
Mach number at the restriction (Mach) reaches 1 at around 20 s, indicating that the flow is choked.
The mass flow rate (mdot_A) before the flow is choked follows the typical quadratic behavior with
respect to an increasing pressure difference. However, the mass flow rate after the flow is choked
becomes linear because the choked mass flow rate depends only on the upstream pressure and
temperature, and the upstream pressure is increasing linearly.
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The fact that the choked mass flow rate depends only on the upstream conditions can cause an
incompatibility with a Mass Flow Rate Source (MA) or a Controlled Mass Flow Rate Source (MA)
block connected downstream of the choked block. Consider this model, which contains the Controlled
Mass Flow Rate Source (MA) block instead of the Controlled Pressure Source (MA) block.

If the source commanded an increasing mass flow rate from left to right through the Local Restriction
(MA) block, the simulation would succeed even if the flow became choked because the Controlled
Mass Flow Rate Source (MA) block would be upstream of the choked block. However, in this model,
the Gain block reverses the flow direction, so that the Controlled Mass Flow Rate Source (MA) block
is downstream of the choked block. The pressure upstream of the Local Restriction (MA) block is
fixed at atmospheric pressure. Therefore, the choked mass flow rate in this situation is constant. As
the commanded mass flow rate increases, eventually it will become greater than this constant value
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of choked mass flow rate. At this point, the commanded mass flow rate and the choked mass flow rate
cannot be reconciled and the simulation fails. Viewing the logged simulation data in the Simscape
Results Explorer shows that simulation fails just at the point when the Mach number reaches 1 and
the flow becomes choked.

In general, if a model is likely to choke, use pressure sources rather than mass flow rate sources. If a
model contains mass flow rate source blocks and the simulation fails, use the Simscape Results
Explorer to inspect the Mach number variables in all Local Restriction (MA), Variable Local
Restriction (MA), and Pipe (MA) blocks connected along the same branch as the mass flow rate
source. If the simulation failure occurs when the Mach number reaches 1, it is likely that there is a
downstream mass flow rate source trying to command a mass flow rate greater than the possible
choked mass flow rate.

See Also

More About
• “Modeling Moisture and Trace Gas Levels” on page 6-13
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Modeling Moisture and Trace Gas Levels
In this section...
“Moist Air Source Domain” on page 6-13
“Trace Gas Modeling Options” on page 6-13
“Using Moisture and Trace Gas Sources” on page 6-14
“Measuring Moisture and Trace Gas Levels” on page 6-15

Moist Air Source Domain
Unlike the moist air domain, the moist air source domain is a separate domain for modeling moisture
and trace gas levels in moist air systems.

Regular connection ports (boundary nodes) of the Moist Air library blocks belong to the moist air
domain. These ports are usually named A or B.

Blocks with a finite moist air volume also contain an internal node, which provides the pressure,
temperature, moisture level, and trace gas level inside the component. This internal node connects to
the moist air source domain. The corresponding port is named S.

For example, these are the ports of a Pipe (MA) block.

• A and B ― Moist air conserving ports associated with the boundary nodes. Use these ports to
connect this block to other blocks in a moist air circuit.

• S ― Moist air source conserving port associated with the internal node. Use this port to model
moisture and trace gas levels, by connecting it to a block in the Moisture & Trace Gas Sources
library.

• H ― Thermal conserving port associated with the temperature either of the air mixture inside the
block or of a block element, such as pipe wall.

• W and F ― Physical signal output ports.

Blocks in the Moisture & Trace Gas Sources library, which inject or extract moisture and trace gas,
also have a port S that belongs to the moist air source domain. This naming convention helps to
distinguish the two different domain types. For more information, see “Using Moisture and Trace Gas
Sources” on page 6-14.

Trace Gas Modeling Options
The Moist Air Properties (MA) block provides three ways to model the amount of trace gas in the air
mixture of the connected circuit:

• None — No trace gas is present. The moist air mixture consists only of dry air and water vapor.
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• Track mass fraction only — The trace gas level can be nonzero and vary during simulation.
However, the amount of trace gas is assumed to be small enough to have a negligible impact on
the fluid properties of the moist air mixture.

• Track mass fraction and gas properties — The trace gas level can be nonzero and vary
during simulation. The fluid properties of the moist air mixture depend on the amount of trace gas
in the mixture.

Trace Gas — None

If you set the Trace gas model parameter of a Moist Air Properties (MA) block to None, the moist air
mixture in the connected circuit consists only of dry air and water vapor. Any nonzero values of trace
gas level in parameters, variable targets, and inputs of the blocks connected to the circuit are
ignored. These include, for example, the amount of trace gas in a reservoir, the initial amount of trace
gas in a moist air volume, and all trace gas sources. The block equations listed on the block reference
pages are simplified by replacing the trace gas mass or mole fraction terms in mixture properties
calculations with 0.

You do not have to enter any fluid properties associated with trace gas, and there is no run-time trace
gas properties table lookup. The underlying system equations are also simplified for increased run-
time efficiency.

Trace Gas — Track mass fraction only

If you select the Track mass fraction only option, this means that you want to keep track of
varying amounts of trace gas in the model, but consider its impact on the mixture properties
negligible. Use this option if you expect the amount of trace gas in the mixture to be very small.

You must specify the trace gas diffusivity in air (for the smoothed upwind scheme) and the gas
constant, but do not need to enter any other fluid properties associated with trace gas, and there is
no run-time trace gas properties table lookup. Therefore, this option is also useful if you do not have
property data for the trace gas.

Trace gas properties in block equations are replaced with the corresponding properties of dry air.
There are no other equation simplifications.

Trace Gas — Track mass fraction and gas properties

If you select the Track mass fraction and gas properties option, this means that you want
to keep track of varying amounts of trace gas, including its impact on the mixture properties. This is
the most general and complete option. You must provide the properties of trace gas. All equations
listed on the block reference pages assume this option.

Using Moisture and Trace Gas Sources
Moisture and trace gas can be injected into blocks with finite moist air volume. (For a complete list of
these blocks, see “Blocks with Moist Air Volume” on page 6-5.) For example, adding moisture to a
Constant Volume Chamber (MA) block can represent respiration of occupants in a room. Moisture
and trace gas can also be extracted from these blocks. For example, removing trace gas from a Pipe
(MA) block can represent a filter that extracts CO2 from moist air flow.

You can use the blocks in the Moisture & Trace Gas Sources library to inject or extract moisture and
trace gas. The moisture and trace gas sources can be connected only to the conserving port S of the
blocks with moist air volume, which is the port associated with the moist air source domain. For more
information, see “Moist Air Source Domain” on page 6-13.
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All Moist Air library blocks with a finite moist air volume have the Moisture and trace gas source
parameter, which controls the visibility of port S and provides options for modeling moisture and
trace gas levels inside the component:

• None — No moisture or trace gas is injected into or extracted from the block. Port S is hidden.
This is the default.

• Constant — Moisture and trace gas are injected into or extracted from the block at a constant
rate. The same parameters as in the Moisture Source (MA) and Trace Gas Source (MA) blocks
become available in the Moisture and Trace Gas section of the block interface. Port S is hidden.
This option provides an easy way to model a constant rate of change for moisture and trace gas
levels directly inside the component, without connecting additional blocks. It is equivalent to
connecting an external constant source.

• Controlled — Moisture and trace gas are injected into or extracted from the block at a time-
varying rate. Port S is exposed. Connect the Controlled Moisture Source (MA) and Controlled
Trace Gas Source (MA) blocks to this port. You can also use this option to connect multiple
moisture and trace gas sources to the same block with moist air volume, to represent different
effects. For example, a Constant Volume Chamber (MA) block can have all of these sources
connected to its port S:

• A Moisture Source (MA) block, representing respiration of water vapor
• A second Moisture Source (MA) block, representing a spray of liquid water
• A Trace Gas Source (MA) block, representing respiration of CO2

If no moisture or trace gas is injected to or extracted from a block with moist air volume, set its
Moisture and trace gas source parameter to None to hide the unused port S.

Note Using moisture source blocks to remove moisture is a different effect than condensation.
Condensation occurs independently whenever φw ≥ φws. For more information, see “Saturation and
Condensation” on page 6-7.

Measuring Moisture and Trace Gas Levels
The Sensors sublibrary of the Moist Air library contains the regular sensor blocks, similar to the ones
found in other domains. The Humidity & Trace Gas Sensor (MA) block lets you measure the moisture
level and trace gas level in a moist air network, upstream of the measured node. These blocks can be
connected only to boundary nodes (regular moist air conserving ports). Therefore, they cannot
measure moist air properties at internal nodes representing a moist air volume.

To measure the amount of moisture and trace gas in a moist air volume, along with the pressure and
temperature, each block with a finite internal moist air volume has a physical signal port F, which
outputs a vector physical signal in base SI units:
% Moist air volume measurements
F == [value(p_I, 'Pa'); value(T_I, 'K'); RH_I; x_w_I; y_w_I; HR_I; x_g_I; y_g_I];

where:

• p_I is the pressure of the moist air volume, in Pa
• T_I is the temperature of the moist air volume, in K
• RH_I is the relative humidity of the moist air volume
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• x_w_I is the specific humidity of moist air volume
• y_w_I is the water vapor mole fraction of the moist air volume
• HR_I is the humidity ratio of the moist air volume
• x_g_I is the trace gas mass fraction of the moist air volume
• y_g_I is the trace gas mole fraction of the moist air volume

Use the Measurement Selector (MA) block to unpack the vector signal and reassign units to pressure
and temperature values. Connect the Measurement Selector (MA) block to the physical signal output
port F of a block with finite internal moist air volume to access the data.

See Also

More About
• “Modeling Moist Air Systems” on page 6-2
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Model Simulation

• “How Simscape Models Represent Physical Systems” on page 7-2
• “How Simscape Simulation Works” on page 7-6
• “Setting Up Solvers for Physical Models” on page 7-11
• “Important Concepts and Choices in Physical Simulation” on page 7-15
• “Making Optimal Solver Choices for Physical Simulation” on page 7-18
• “Filtering Input Signals and Providing Time Derivatives” on page 7-22
• “System Scaling by Nominal Values” on page 7-24
• “Frequency and Time Simulation Mode” on page 7-29
• “Troubleshooting Simulation Errors” on page 7-35
• “Limitations” on page 7-40
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How Simscape Models Represent Physical Systems
In this section...
“Representations of Physical Systems” on page 7-2
“Differential, Differential-Algebraic, and Algebraic Systems” on page 7-2
“Stiffness” on page 7-2
“Events and Zero Crossings” on page 7-3
“Working with Simscape Representation” on page 7-3
“Managing Zero Crossings in Simscape Models” on page 7-3
“References” on page 7-4

Representations of Physical Systems
This section describes important characteristics of the mathematical representations of physical
systems, and how Simscape software implements such representations. You might find this overview
helpful if you:

• Require details of such representations to improve your model fidelity or simulation performance.
• Are constructing your own, custom Simscape components using the Simscape language.
• Need to troubleshoot Simscape modeling or simulation failures.

Mathematical representations are the foundation for physical simulation. For more information about
simulation, see “How Simscape Simulation Works” on page 7-6.

Differential, Differential-Algebraic, and Algebraic Systems
The mathematical representation of a physical system contains ordinary differential equations
(ODEs), algebraic equations, or both.

• ODEs govern the rates of change of system variables and contain some or all of the time
derivatives of the system variables.

• Algebraic equations specify functional constraints among system variables, but contain no time
derivatives of system variables.

• Without algebraic constraints, the system is differential (ODEs).
• Without ODEs, the system is algebraic.
• With ODEs and algebraic constraints, the system is mixed differential-algebraic (DAEs).

A system variable is differential or algebraic, depending on whether or not its time derivative appears
in the system equations.

Stiffness
A mathematical problem is stiff if the solution you are seeking varies slowly, but there are other
solutions within the error tolerances that vary rapidly. A stiff system has several intrinsic time scales
of very different magnitude [1].
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A stiff physical system has one or more components that behave “stiffly” in the ordinary sense, such
as a spring with a large spring constant. Mathematical equivalents include quasi-incompressible
fluids and low electrical inductance. Such systems often exhibit high frequency oscillations in some of
their components or modes.

Events and Zero Crossings
Events are discontinuous changes in system state or dynamics as the system evolves in time; for
example, a valve opening, or a hard stop. For more information on how events are represented in the
Simscape language, see “Discrete Event Modeling”.

A zero crossing is a specific event type, represented by the value of a mathematical function changing
sign. Variable-step solvers take smaller steps when they detect a zero-crossing event. Smaller steps
help to capture the dynamics that cause the zero crossing, but they also significantly slow down the
simulation. Various methods of zero crossing detection and analysis help you strike the right balance
between the simulation speed and accuracy. For more information, see “Managing Zero Crossings in
Simscape Models” on page 7-3.

Working with Simscape Representation
A Simscape model is equivalent to a set of equations representing one or more physical systems as
physical networks.

• Start by assuming that your physical network is a DAE system: a mix of differential and algebraic
equations and variables on page 7-2.

Remember that some physical networks are represented by ODEs only.
• Physical networks may contain stiff differential equations on page 7-2.
• Identify discrete and continuous components that might change discontinuously on page 7-3

during a simulation.

Managing Zero Crossings in Simscape Models
Your model can contain zero-crossing conditions arising from several sources:

• Simscape and Simulink blocks copied from their respective block libraries
• Custom blocks programmed in the Simscape language

Simulink software has global methods for managing zero-crossing events. For more information, see
“Zero-Crossing Detection” (Simulink).

You can disable zero-crossing detection on individual blocks, or globally across the entire model.
Zero-crossing detection often improves simulation accuracy, but can slow simulation speed.

Tip If the exact times of zero crossings are important in your model, then keep zero-crossing
detection enabled. Disabling it can lead to major simulation inaccuracies.
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Detecting and Minimizing Zero Crossings in Simscape Models

In addition to generic Simulink methods, Simscape software has specific tools that let you detect and
manage zero-crossings in your models:

• Prior to simulation, you can use the Statistics Viewer to identify the potential zero-crossing signals
in the model. These signals are typically generated from operators and functions that contain
discontinuities, such as comparison operators, abs, sqrt functions, and so on. During simulation
it is possible for none of these signals to produce a zero-crossing event or for one or more of these
signals to have multiple zero-crossing events. For more information, see “View Model Statistics”
on page 14-10.

• When logging simulation data for a model, you can select the Log simulation statistics option.
The data log then includes the actual zero-crossing data during simulation. For more information,
see “Log Simulation Statistics” on page 13-12.

You can access and analyze zero-crossing data logged during simulation by using the Simscape
Results Explorer. For more information, see “About the Simscape Results Explorer” on page 13-
21.

• The sscprintzcs function prints information about zero crossings detected during simulation,
based on logged simulation data. Before you call this function, you must have the simulation log
variable, which includes simulation statistics data, in your current workspace. For more
information and examples, see sscprintzcs.

Managing zero crossing is especially important when you prepare your models for real-time
simulation. See “Reduce Zero Crossings” on page 11-55 for a detailed example of this workflow.

Enabling and Disabling Zero-Crossing Conditions in Simscape Language

When writing code for your own custom blocks using the Simscape language, you can create or avoid
zero-crossing conditions in your model by switching between different implementations of
discontinuous conditional expressions. You can:

• Use relational operators, which create zero-crossing conditions. For example, programming the
operator relation: a < b creates a zero-crossing condition.

• Use relational functions, which do not create zero-crossing conditions. For example, programming
the functional relation: lt(a,b) does not create a zero-crossing condition. For more information
on whether a particular function creates discontinuities when used in Simscape language, see
equations.

Note Using relational functions, like lt(a,b), in event predicates always creates a zero-crossing
condition. For more information about event predicates, see “Discrete Event Modeling”.
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How Simscape Simulation Works
In this section...
“Simscape Simulation Phases” on page 7-6
“Model Validation” on page 7-7
“Network Construction” on page 7-8
“Equation Construction” on page 7-8
“Initial Conditions Computation” on page 7-8
“Transient Initialization” on page 7-9
“Transient Solve” on page 7-9

Simscape Simulation Phases
You might find this brief overview helpful for constructing models and understanding errors. For
more information, see “How Simscape Models Represent Physical Systems” on page 7-2.

Simscape software gives you multiple ways to simulate and analyze physical systems in the Simulink
environment. Running a physical model simulation is similar to simulating any Simulink model. It
entails setting various simulation options, starting the simulation, and viewing the simulation results.
This topic describes various aspects of simulation specific to Simscape models. For specifics of
simulating and analyzing with individual Simscape add-on products, refer to the documentation for
those individual add-on products.

This flow chart presents the Simscape simulation sequence.
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The flow chart consists of the following major phases:

1 “Model Validation” on page 7-7
2 “Network Construction” on page 7-8
3 “Equation Construction” on page 7-8
4 “Initial Conditions Computation” on page 7-8
5 “Transient Initialization” on page 7-9
6 “Transient Solve” on page 7-9

Model Validation
The Simscape solver first validates the model configuration and checks your data entries from the
block dialog boxes.

• All Simscape blocks in a diagram must be connected into one or more physical networks.
• Each topologically distinct physical network in a diagram requires exactly one Solver
Configuration block.

• If your model contains fluid elements (such as two-phase fluids, gas, moist air, isothermal or
thermal liquid), each topologically distinct circuit in a diagram can contain a block that defines the
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fluid properties for all the blocks that connect to the circuit. If no fluid block is attached to a loop,
the blocks in this loop use the default fluid. However, more than one fluid block in a loop
generates an error.

• Signal units specified in a Simulink-PS Converter block must match the input type expected by the
Simscape block connected to it. For example, when you provide the input signal for an Ideal
Angular Velocity Source block, specify angular velocity units, such as rad/s or rpm, in the
Simulink-PS Converter block, or leave it unitless. Similarly, units specified in a PS-Simulink
Converter block must match the type of physical signal provided by the Simscape block outport.

Network Construction
After validating the model, the Simscape solver constructs the physical network based on the
following principles:

• Two directly connected Conserving ports have the same values for all their Across variables (such
as voltage or angular velocity).

• Any Through variable (such as current or torque) transferred along the Physical connection line is
divided among the multiple components connected by the branches. For each Through variable,
the sum of all its values flowing into a branch point equals the sum of all its values flowing out.

Equation Construction
Based on the network configuration, the parameter values in the block dialog boxes, and the global
parameters defined by the fluid properties, if applicable, the Simscape solver constructs the system of
equations for the model.

These equations contain system variables of the following types:

• Dynamic — Time derivatives of these variables appear in equations. Dynamic, or differential,
variables add dynamics to the system and require the solver to use numerical integration to
compute their values. Dynamic variables can produce either independent or dependent states for
simulation.

• Algebraic — Time derivatives of these variables do not appear in equations. These variables
appear in algebraic equations but add no dynamics, and this typically occurs in physical systems
due to conservation laws, such as conservation of mass and energy. The states of algebraic
variables are always dependent on dynamic variables, other algebraic variables, or inputs.

The solver then performs the analysis and eliminates variables that are not needed to solve the
system of equations. After variable elimination, the remaining variables (algebraic, dynamic
dependent, and dynamic independent) get mapped to Simulink state vector of the model.

For information on how to view and analyze model variables, see “Model Statistics”.

Initial Conditions Computation
The Simscape solver computes the initial conditions only once, at the beginning of simulation (t = 0).
In the Solver Configuration block dialog box, the default is that the Start simulation from steady
state check box is not selected. If it is selected in your model, see “Finding an Initial Steady State”
on page 7-9.

The solver computes the initial conditions by finding initial values for all the system variables that
exactly satisfy all the model equations. You can affect the initial conditions computation by block-level
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variable initialization, that is, by specifying the priority and target initial values on the Variables tab
of the block dialog boxes. You can also initialize variables for a whole model from a saved operating
point.

The values you specify during variable initialization are not the actual values of the respective
variables, but rather their target values at the beginning of simulation (t = 0). Depending on the
results of the solve, some of these targets may or may not be satisfied. The solver tries to satisfy the
high-priority targets first, then the low-priority ones:

• At first, the solver tries to find a solution where all the high-priority variable targets are met
exactly, and the low-priority targets are approximated as closely as possible. If the solution is
found during this stage, it satisfies all the high-priority targets. Some of the low-priority targets
might also be met exactly, the others are approximated.

• If the solver cannot find a solution that exactly satisfies all the high-priority targets, it issues a
warning and enters the second stage, where High priority is relaxed to Low. That is, the solver
tries to find a solution by approximating both the high-priority and the low-priority targets as
closely as possible.

After you initialize the variables and prior to simulating the model, you can open the Variable Viewer
to see which of the variable targets have been satisfied. For more information on block-level variable
initialization, see “Variable Initialization”.

Finding an Initial Steady State

When you select the Start simulation from steady state check box, the solver attempts to find the
steady state that would result if the inputs to the system were held constant for a long enough time,
starting from the initial state obtained from the initial conditions computation just described. If the
steady-state solve succeeds, the state found is some steady state (within tolerance), but not
necessarily the state expected from the given initial conditions. Steady state means that the system
variables are no longer changing with time. Simulation then starts from this steady state.

A model can have more than one steady state. In this case, the solver selects the steady-state solution
that is consistent with the variable targets specified during block-level variable initialization. For
more information, see “Variable Initialization”.

Transient Initialization
After computing the initial conditions, or after a subsequent event (such as a discontinuity resulting,
for example, from a valve opening, or from a hard stop), the Simscape solver performs transient
initialization. Transient initialization fixes all dynamic variables and solves for algebraic variables and
derivatives of dynamic variables. The goal of transient initialization is to provide a consistent set of
initial conditions for the next phase, transient solve.

Transient Solve
Finally, the Simscape solver performs transient solve of the system of equations. In transient solve,
continuous differential equations are integrated in time to compute all the variables as a function of
time.

The solver continues to perform the simulation according to the results of the transient solve until the
solver encounters an event, such as a zero crossing or discontinuity. The event may be within the
physical network or elsewhere in the Simulink model. If the solver encounters an event, the solver
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returns to the phase of transient initialization, and then back to transient solve. This cycle continues
until the end of simulation.
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Setting Up Solvers for Physical Models
In this section...
“About Simulink and Simscape Solvers” on page 7-11
“Choosing Simulink and Simscape Solvers” on page 7-11
“Harmonizing Simulink and Simscape Solvers” on page 7-12

About Simulink and Simscape Solvers
This section explains how to select solvers for physical simulation. Proper simulation of Simscape
models requires certain changes to Simulink defaults and consideration of physical simulation trade-
offs. For recommended choices, see “Making Optimal Solver Choices for Physical Simulation” on page
7-18.

Choosing Simulink and Simscape Solvers
Simulink and Simscape solver technologies provide a range of tools to simulate physical systems,
including the powerful Simscape technique of local solvers. You choose global, or model-wide, solvers
through Simulink. After making these choices, check that they are consistent; see “Harmonizing
Simulink and Simscape Solvers” on page 7-12.

• “Working with Global Simulink Solvers” on page 7-11
• “Working with Local Simscape Solvers” on page 7-11

Working with Global Simulink Solvers

In the Configuration Parameters dialog box of your model, on the Solver pane, the solver and related
settings that you select are global choices. For more information, see “Solver Selection Criteria”
(Simulink).

When you first create a model, the default Simulink solver is VariableStepAuto. For more
information, see “Select Solver Using Auto Solver” (Simulink). To select a different solver, follow a
procedure similar to the procedure in “Modifying Initial Settings” on page 1-21.

• You can choose one from a suite of both variable-step and fixed-step solvers.
• You can also select from among explicit and implicit solvers. For physical models, it is

recommended that you use implicit solvers, such as ode1be, ode14x, ode23t, and ode15s. Implicit
solvers require fewer time steps than explicit solvers, such as ode45, ode113, and ode1.

See “Switching from the Default Explicit Solver to Other Simulink Solvers” on page 7-13.
• If all the Simulink and Simscape states in your model are discrete, Simulink automatically

switches to a discrete solver and issues a warning. Otherwise, a continuous solver is the default.
• By default, Simulink variable-step solvers attempt to locate events in time by zero-crossing

detection. See “Managing Zero Crossings in Simscape Models” on page 7-3.

Working with Local Simscape Solvers

You can switch one or more physical networks to a local implicit, fixed-step Simscape solver by
selecting Use local solver in the network Solver Configuration block. The solver and related settings
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you make in each Solver Configuration block are specific to the connected physical network and can
differ from network to network.

A physical network using a local solver appears to the global Simulink solver as if it has discrete
states. You can still use any continuous global solver.

Choosing Local Solvers and Sample Times

To use a local solver, choose a solver type (Backward Euler, Trapezoidal Rule, or Partitioning) and a
sample time. Backward Euler is the default.

Choosing Fixed-Cost Simulation

You can select a fixed-cost simulation for one or more physical networks by selecting Use fixed-cost
runtime consistency iterations, as well as Use local solver, and fixing the number of nonlinear
and mode iterations. Fixed-cost simulation requires a global fixed-step solver.

Choosing Multirate Simulation

With the local solver option, you can perform multirate simulations, with:

• Different sample times in different physical networks, through their respective Solver
Configuration blocks

• A sample-based Simulink block in the model with a sample time different from the Solver
Configuration block or blocks

Harmonizing Simulink and Simscape Solvers
Your Simulink and Simscape solver choices must work together consistently. To ensure consistency of
your Simulink and Simscape solver choices for a particular model, open the model Configuration
Parameters dialog box. In the model window, open the Modeling tab and click Model Settings.
Review and adjust the following settings.

• “Switching from the Default Explicit Solver to Other Simulink Solvers” on page 7-13
• “Enabling or Disabling Simulink Zero-Crossing Detection” on page 7-14
• “Making Multirate Simulation Consistent” on page 7-14
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Simscape Pane of the Configuration Parameters Dialog Box

Switching from the Default Explicit Solver to Other Simulink Solvers

When you first create a model, the default Simulink solver is VariableStepAuto. Auto solver
chooses a suitable solver as described in “Select Solver Using Auto Solver” (Simulink), and for some
types of models it can choose an explicit solver, ode45. If you do not modify the default (explicit)
solver, your performance may not be optimal. Implicit solvers are better for most physical
simulations. For more information about implicit solvers and physical systems, see “Important
Concepts and Choices in Physical Simulation” on page 7-15.
Diagnostic Messages About Explicit Solvers

When you use an explicit solver in a model containing Simscape blocks, the system issues a warning
to alert you to a potential problem.

To turn off this default warning or to change it to an error message, go to the Simscape pane of the
Configuration Parameters dialog box:

1 From the Explicit solver used in model containing Physical Networks blocks drop-down
list, select the option that you want:

• warning — If the model uses an explicit solver, the system issues a warning upon simulation.
This is the default option that alerts you to a potential problem if you use the default solver.

• error — If the model uses an explicit solver, the system issues an error message upon
simulation. If your model is stiff, and you do not want to use explicit solvers, select this option
to avoid future errors.

• none — If the model uses an explicit solver, the system issues no warning or error message
upon simulation. If you want to work with explicit solvers, in particular for models that are not
stiff, select this option.

 Setting Up Solvers for Physical Models

7-13



2 Click OK.

Enabling or Disabling Simulink Zero-Crossing Detection

By default, Simulink tracks an important class of simulation events by detecting zero crossings. With
a global variable-step solver and without a local solver, Simulink attempts to locate the simulated
times of zero crossings, if present. See “Managing Zero Crossings in Simscape Models” on page 7-3.

Diagnostic Messages About Globally Disabling Zero-Crossing Detection

You can globally disable zero-crossing detection in the Solver pane of the Configuration Parameters
dialog box, under Zero-crossing options. If you do, and if you are using a global variable-step solver
without a local solver, the system issues a warning or error when you simulate with Simscape blocks.

You can choose between warning and error messages in the Simscape pane of the Configuration
Parameters dialog box.

1 From the Zero-crossing control is globally disabled in Simulink drop-down list, select the
option that you want, if you globally disable zero-crossing detection:

• warning — The system issues a warning message upon simulation. This option is the default.
• error — The system issues an error message upon simulation, which stops.

2 Click OK.

Making Multirate Simulation Consistent

The sample time or step size of the global Simulink solver must be the smallest time step of all the
solvers in a multirate Simscape simulation.

To avoid simulation errors in sample time propagation, go to the Solver pane in the Configuration
Parameters dialog box and select the Automatically handle rate transition for data transfer
check box.
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Important Concepts and Choices in Physical Simulation
In this section...
“Variable-Step and Fixed-Step Solvers” on page 7-15
“Explicit and Implicit Solvers” on page 7-15
“Full and Sparse Linear Algebra” on page 7-16
“Event Detection and Location” on page 7-16
“Unbounded, Bounded, and Fixed-Cost Simulation” on page 7-16
“Global and Local Solvers” on page 7-17

This section describes advanced concepts and trade-offs you might want to consider as you configure
and test solvers and other simulation settings for your Simscape model. For a summary of
recommended settings, see “Making Optimal Solver Choices for Physical Simulation” on page 7-18.
For background information, consult “How Simscape Models Represent Physical Systems” on page 7-
2 and “How Simscape Simulation Works” on page 7-6.

Variable-Step and Fixed-Step Solvers
Variable-step solvers are the usual choice for design, prototyping, and exploratory simulation, and to
precisely locate events during simulation. They are not useful for real-time simulation and can be
costly if there are many events.

A variable-step solver automatically adjusts its step size as it moves forward in time to adapt to how
well it controls solution error. You control the accuracy and speed of the variable-step solution by
adjusting the solver tolerance. With many variable-step solvers, you can also limit the minimum and
maximum time step size.

Fixed-step solvers are recommended or required if you want to make performance comparisons
across platforms and operating systems, to generate a code version of your model, and to bound or fix
simulation cost. A typical application is real-time simulation. For more information, see “Real-Time
Simulation”.

With a fixed-step solver, you specify the time step size to control the accuracy and speed of your
simulation. Fixed-step solvers do not adapt to improve accuracy or to locate events. These limitations
can lead to significant simulation inaccuracies.

Explicit and Implicit Solvers
The degree of stiffness and the presence of algebraic constraints in your model influence the choice
between an explicit or implicit solver. Explicit and implicit solvers use different numerical methods to
simulate a system.

• If the system is a nonstiff ODE system, choose an explicit solver. Explicit solvers require less
computational effort than implicit solvers, if other simulation characteristics are fixed.

To find a solution for each time step, an explicit solver uses a formula based on the local gradient
of the ODE system.

• If the system is stiff, use an implicit solver. Though an explicit solver may require less
computational effort, for stiff problems an implicit solver is more accurate and often essential to
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obtain a solution. Implicit solvers require per-step iterations within the simulated time steps. With
some implicit solvers, you can limit or fix these iterations.

An implicit solver starts with the solution at the current step and iteratively solves for the solution
at the next time step with an algebraic solver. An implicit algorithm does more work per
simulation step, but can take fewer, larger steps.

• If the system contains DAEs, even if it is not stiff, use an implicit solver. Such solvers are designed
to simultaneously solve algebraic constraints and integrate differential equations.

Full and Sparse Linear Algebra
When you simulate a system with more than one state, the solver manipulates the mathematical
system with matrices. For a large number of states, sparse linear algebra methods applied to large
matrices can make the simulation more efficient.

Event Detection and Location
Events, in most cases, occur between simulated time steps.

• Fixed-step solvers detect events after “stepping over” them, but cannot adaptively locate events in
time. This can lead to large inaccuracies or failure to converge on a solution.

• Variable-step solvers can both detect events and estimate the instants when they occur by
adapting the timing and length of the time steps.

Tip To estimate the timing of events or rapid changes in your simulation, use a variable-step solver.

If your simulation has to frequently adapt to events or rapid changes by changing its step size, much
or all of the advantage of implicit solvers over explicit solvers is lost.

Unbounded, Bounded, and Fixed-Cost Simulation
In certain cases, such as real-time simulation, you need to simulate with an execution time that is not
only bounded, but practically fixed to a predictable value. Fixing execution time can also improve
performance when simulating frequent events.

The real-time cost of a variable-step simulation is potentially unlimited. The solver can take an
indefinite amount of real time to solve a system over a finite simulated time, because the number and
size of the time steps are adapted to the system. You can configure a fixed-step solver to take a
bounded amount of real time to complete a simulation, although the exact amount of real time might
still be difficult to predict before simulation. Even a fixed-step solver can take multiple iterations to
find a solution at each time step. Such iterations are variable and not generally limited in number; the
solver iterates as much as it needs to.

Fixing execution time implies fixed-cost simulation, which both fixes the time step and limits the
number of per-step iterations. Fixed-cost simulation prevents execution overruns, when the execution
time is longer than the simulation sample time. A bounded execution time without a known fixed cost
might still cause some steps to overrun the sample time.

The actual amount of computational effort required by a solver is based on a number of other factors
as well, including model complexity and computer processor. For more information, see “Real-Time
Simulation”.
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Global and Local Solvers
You can use different solvers on different parts of the system. For example, you might want to use
implicit solvers on stiff parts of a system and explicit solvers everywhere else. Such local solvers
make the simulation more efficient and reduce computational cost.

Such multisolver simulations must coordinate the separate sequences of time steps of each solver and
each subsystem so that the various solvers can pass simulation updates to one another on some or all
of the shared time steps.
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Making Optimal Solver Choices for Physical Simulation

In this section...
“Simulating with Variable Time Step” on page 7-18
“Simulating with Fixed Time Step — Local and Global Fixed-Step Solvers” on page 7-18
“Simulating with Fixed Cost” on page 7-19
“Troubleshooting and Improving Solver Performance” on page 7-19
“Multiple Local Solvers Example with a Mixed Stiff-Nonstiff System” on page 7-20

For the key simulation concepts to consider before making these choices, see “Important Concepts
and Choices in Physical Simulation” on page 7-15.

Simulating with Variable Time Step
For a typical Simscape model, the Simulink variable-step solvers ode15s and ode23t are
recommended. Of these two global solvers:

• The ode15s solver is more stable, but tends to damp out oscillations.
• The ode23t solver captures oscillations better but is less stable.

With Simscape models, these solvers solve the differential and algebraic parts of the physical model
simultaneously, making the simulation more accurate and efficient.

Simulating with Fixed Time Step — Local and Global Fixed-Step
Solvers
In a Simscape model, it is recommended that you implement fixed-step solvers by continuing to use a
global variable-step solver and switching the physical networks within your model to local fixed-step
solvers through each network Solver Configuration block. The local solver choices are:

• The Backward Euler tends to damp out oscillations, but is more stable, especially if you increase
the time step.

• The Trapezoidal Rule solver captures oscillations better but is less stable.
• The Partitioning solver lets you increase real-time simulation speed by partitioning the entire

system of equations corresponding to a Simscape network into a cascade of smaller equation
systems. Not all networks can be partitioned. However, when a system can be partitioned, this
solver provides a significant increase in real-time simulation speed. For more information, see
“Increase Simulation Speed Using the Partitioning Solver” on page 11-19.

Regardless of which local solver you choose, the Backward Euler method is always applied:

• Right at the start of simulation.
• Right after an instantaneous change, when the corresponding block undergoes an internal

discrete change. Such changes include clutches locking and unlocking, valve actuators opening
and closing, and the switching of the Asynchronous Sample & Hold block.
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Switching to Discrete States and Solvers

• If you switch a physical network to a local solver, the global solver treats that network as having
discrete states.

• If other physical networks in your model are not using local solvers, or if the non-Simscape parts
of your model have continuous states, then you must use a continuous global solver.

• If all physical networks in your model use local solvers, and all other parts of your model have only
discrete states, then the global solver effectively sees only discrete states. In that case, a discrete,
fixed-step global solver is recommended. If you are attempting a fixed-cost simulation with
discrete states, you must use a discrete, fixed-step global solver.

Note Input filtering may introduce continuous states. If you are using a combination of discrete and
local solvers and get an error message about the model containing continuous states, check the
Simulink-PS Converter blocks in the model and turn off input filtering, if needed. For more
information, see “Filtering Input Signals and Providing Time Derivatives” on page 7-22.

For Maximum Accuracy with Fixed-Step Simulation

If solution accuracy is your single overriding requirement, use the global Simulink fixed-step solver
ode14x, without local solvers. This implicit solver is the best global fixed-step choice for physical
systems. While it is more accurate than the Simscape local solvers for most models, ode14x can be
computationally more intensive and slower when you use it by itself than it is when you use it in
combination with local solvers.

In this solver, you must limit the number of global implicit iterations per time step. Control these
iterations with the Number Newton’s iterations parameter in the Solver pane of the Configuration
Parameters dialog box.

Simulating with Fixed Cost
Many Simscape models need to iterate multiple times within one time step to find a solution. If you
want to fix the cost of simulation per time step, you must limit the number of these iterations,
regardless of whether you are using a local solver, or a global solver like ode14x. For more
information, see “Unbounded, Bounded, and Fixed-Cost Simulation” on page 7-16 and “Fixed-Cost
Simulation for Real-Time Viability” on page 11-71.

To limit the iterations, open the Solver Configuration block of each physical network. Select Use
fixed-cost runtime consistency iterations and set limits for the number of nonlinear and mode
iterations per time step.

Tip Fixed-cost simulation with variable-step solvers is not possible in most simulations. Attempt
fixed-cost simulation with a fixed-step solver only and avoid using fixed-cost iterations with variable-
step solvers.

Troubleshooting and Improving Solver Performance
Consider the basic trade-off of speed versus accuracy and stability. A larger time step or tolerance
results in faster simulation, but also less accurate and less stable simulation. If a system undergoes
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sudden or rapid changes, larger tolerance or step size can cause major errors. Consider tightening
the tolerance or step size if your simulation:

• Is not accurate enough or looks unphysical.
• Exhibits discontinuities in state values.
• Reaches the minimum step size allowed without converging, usually a sign that one or more

events or rapid changes occur within a time step.

Any one or all of these steps increase accuracy, but make the simulation run more slowly.

For Local Solvers

Models with friction or hard stops are particularly difficult for local solvers, and may not work or may
require a very small time step.

With the Trapezoidal Rule solver, oscillatory “ringing” can become more of a problem as the time step
is increased. For a larger time step in a local solver, consider switching to Backward Euler.

For ODE Systems

In certain cases, your model reduces to an ODE system, with no dependent algebraic variables. (See
“How Simscape Models Represent Physical Systems” on page 7-2.) If so, you can use any global
Simulink solver, with no special physical modeling considerations. An explicit solver is often the best
choice in such situations.

• Through careful analysis, you can sometimes determine if your model is represented by an ODE
system.

• If you create a Simscape model from a mathematical representation using the Simscape language,
you can determine directly if the resulting system is ODE.

For Large Systems

Depending on the number of system states, you can simulate more efficiently if you switch the value
of the Linear Algebra setting in the Solver Configuration block.

For smaller systems, Full provides faster results. For larger systems, Sparse is typically faster.

Multiple Local Solvers Example with a Mixed Stiff-Nonstiff System
In this example, a Simscape model contains three physical networks.

• Two networks (numbers 1 and 3) use local solvers, making these two networks appear to the
global solver as if they had discrete states. Internally, these networks still have continuous states.
These networks are moderately and highly stiff, respectively.

One of these networks (number 1) uses the Backward Euler (BE) local solver. The other (number
3) uses the Trapezoidal Rule (TR) local solver.

• The remaining network (number 2) uses the global Simulink solver. Its states appear to the model
as continuous. This network is not stiff and is pure ODE. Use an explicit global solver.

• Because at least one network appears to the model as continuous, you must use a continuous
solver. However, if you remove network 2, and if the model contains no continuous Simulink
states, Simulink automatically switches to a discrete global solver.
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Filtering Input Signals and Providing Time Derivatives
You may need to provide time derivatives of some of the input signals, especially if you use an explicit
solver. One way of providing the necessary input derivatives is by filtering the input through a low-
pass filter. Input filtering makes the input signal smoother and generally improves model
performance. The additional benefit is that the Simscape engine computes the time derivatives of the
filtered input. The first-order filter provides one derivative, while the second-order filter provides the
first and second derivatives. If you use input filtering, it is very important to select the appropriate
value for the filter time constant.

The filter time constant controls the filtering of the input signal. The filtered input follows the true
input but is smoothed, with a lag on the order of the time constant that you choose. Set the time
constant to a value no larger than the smallest time interval in the system that interests you. If you
choose a very small time constant, the filtered input signal is closer to the true input signal. However,
this filtered input signal increases the stiffness of the system and slows the simulation.

Instead of using input filtering, you can provide time derivatives for the input signal directly, as
additional physical signals.

For piecewise-constant signals, you can also explicitly set the input derivatives to zero.

You can control the way you provide time derivatives for each input signal by configuring the
Simulink-PS Converter block connected to that input signal:

1 Open the Simulink-PS Converter block dialog box.
2 Click the Input Handling tab.

3 When you add a new Simulink-PS Converter block to your model, the default input handling
options are Provide signals and Input only, and the block has one Simulink input port and
one physical signal output port.
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4 To turn on input filtering, set the Filtering and derivatives parameter to Filter input,
derivatives calculated. Select the first-order or second-order filter, by using the Input
filtering order parameter, and set the appropriate Input filtering time constant (in seconds)
parameter value for your model.

5 To avoid filtering the input signal, keep the Filtering and derivatives parameter as Provide
signals. Then set the Provided signals parameter value:

• Input and first derivative — If you select this option, an additional Simulink input
port appears on the Simulink-PS Converter block, to let you connect the signal providing input
derivative.

• Input and first two derivatives — If you select this option, two additional Simulink
input ports appear on the Simulink-PS Converter block, to let you connect the signals
providing input derivatives.

6 Finally, if your input signal is piecewise constant (such as step), you can also explicitly set the
input derivatives to zero by selecting the Zero derivatives (piecewise constant) value
for the Filtering and derivatives parameter.
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System Scaling by Nominal Values
In this section...
“Enable or Disable System Scaling by Nominal Values” on page 7-24
“Possible Sources of Nominal Values and Their Evaluation Order” on page 7-24
“Specify Nominal Value-Unit Pairs for a Model” on page 7-25
“Modify Nominal Values for a Block Variable” on page 7-26

Nominal values provide a way to specify the expected magnitude of a variable in a model, similar to
specifying a transformer rating, or setting a range on a voltmeter. Using system scaling based on
nominal values increases the simulation robustness. This functionality provides a way to fine-tune
scaling of individual variables in a model. It is especially helpful for initial conditions convergence
and maintaining a minimum step size.

Enable or Disable System Scaling by Nominal Values
Using system scaling based on nominal values is a best practice for Simscape models because it
improves simulation robustness. Therefore, when you create a new model, scaling by nominal values
is enabled by default.

System scaling by nominal values is controlled by the Normalize using nominal values
configuration parameter.

1 In the Simulink Toolstrip at the top of the model window, open the Modeling tab and click
Model Settings. The Configuration Parameters dialog box opens.

2 In the Configuration Parameters dialog box, in the left pane, select Simscape. The right pane
displays the Normalize using nominal values check box:

• If the check box is selected, the model provides the scaling information to the solver based on
the specified nominal values. To view, add, and edit the value-unit pairs for the model, click
the Specify nominal values button next to the Normalize using nominal values check
box.

• If the check box is cleared, the scaling by nominal values is disabled.

Possible Sources of Nominal Values and Their Evaluation Order
The scaling of each variable is determined by its nominal value and physical units. Nominal values
can come from different sources:

• Block — You can specify nominal value and unit as variable declaration attributes in a Simscape
component file underlying the block. These attributes translate into block parameters
x_nominal_value and x_nominal_unit (where x is the variable name). You can also override
these values on individual blocks in the model by setting the corresponding block parameter
x_nominal_specify to 'on' and supplying different values for x_nominal_value and
x_nominal_unit. These parameters are not visible in the block dialog box, but you can use
either the Property Inspector or set_param and get_param functions to view and change their
values. For more information, see “Modify Nominal Values for a Block Variable” on page 7-26.

• Model — In absence of a nominal value specified for the block, a variable uses the nominal value
for the commensurate physical unit specified in the model table. All models have a default table of
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nominal values and units (factory default). To view, add, and edit the value-unit pairs for the
model, click the Specify nominal values button next to the Normalize using nominal values
check box. For more information, see “Specify Nominal Value-Unit Pairs for a Model” on page 7-
25.

• Derived — If the model table of nominal values does not contain a row for a unit commensurate
with the physical unit of a variable, then the nominal value for this variable is derived from
fundamental dimensions. For example, if the variable's initial value is in lbf, and there is no entry
in the table for force, but the table contains {10,'lbm'}, {12,'ft'}, and {2,'min'}, then the
nominal value for that variable is {10*12/2^2,'lbm*ft/min^2'}.

• Fixed — Event variables, top-level model inputs, and Simscape Multibody™ variables cannot be
scaled according to nominal values.

The Variable Viewer in advanced configuration shows the nominal value and unit for each variable,
along with the source. For more information, see “Variable Viewer” on page 8-18.

Specify Nominal Value-Unit Pairs for a Model
All models have a default table of nominal values and units (factory default). To view, add, and edit
the value-unit pairs for a model:

1 In the Simulink Toolstrip at the top of the model window, open the Modeling tab and click
Model Settings. The Configuration Parameters dialog box opens.

2 In the Configuration Parameters dialog box, in the left pane, select Simscape.
3 Make sure the Normalize using nominal values check box is selected.
4 Click the Specify nominal values button next to the Normalize using nominal values check

box.

The model table of nominal values opens in a new window. It contains all the value-unit pairs
currently defined for the model.
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5 To edit a value-unit pair, select the corresponding cell and enter the new value or unit.
6

To add a new value-unit pair, in the top toolbar of the window containing the table, click . This
action adds a new empty row at the bottom of the table. Select the cells in this row and enter the
nominal value and unit for the new value-unit pair.

7
To delete a value-unit pair, select the corresponding row and click .

8 When finished editing the table, click OK. Table data is saved when you save the model.

Modify Nominal Values for a Block Variable
Each variable in a block has three associated block parameters (where x is the variable name):

• x_nominal_specify — Lets you override the system default nominal value for variable x in this
particular block. The default parameter value is 'off', in which case the variable nominal value
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is determined according to the evaluation order described in “Possible Sources of Nominal Values
and Their Evaluation Order” on page 7-24. Set this parameter to 'on' to use the
x_nominal_value and x_nominal_unit parameter values for scaling.

• x_nominal_value — If the x_nominal_specify parameter is set to 'on', then this value, in
conjunction with the nominal unit parameter, determines the scaling of variable x in this
particular block. The parameter value must be a numeric value, specified as a character vector.
The default parameter value is '1'.

• x_nominal_unit — If the x_nominal_specify parameter is set to 'on', then this unit, in
conjunction with the nominal value parameter, determines the scaling of variable x in this
particular block. The parameter value must be a valid physical unit name, specified as a character
vector. The unit must be commensurate with the unit specified for the initial value of the variable.
The default unit is the same as for the initial value.

Note Nominal value and unit can be specified as variable declaration attributes in a Simscape
component file underlying the block. For more information, see “Nominal Value and Unit for a
Variable”. In this case, the nominal value and unit parameters for that variable get their default
values from the variable declaration attributes.

These parameters are not visible in the block dialog box, but you can use set_param and
get_param functions to view and change their values.

For example, to change the nominal value and unit for variable i (current) for an individual block,
select this block in the model and type:

set_param(gcb,'i_nominal_specify','on')
set_param(gcb,'i_nominal_value','10')
set_param(gcb,'i_nominal_unit','mA')

This sequence of commands overrides the default nominal value for the block variable and sets it to
10 mA.

To perform the same actions using the Property Inspector:

1 Select the block in the model.
2 In the Simulink Toolstrip at the top of the model window, on the Modeling tab, click the arrow

on the far right of the Design section. In the General gallery, click Property Inspector.
3 In the Property Inspector pane showing the block properties, expand the Variables node, and

then expand the nodes for the Current variable.
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4 Select the check box next to Nominal. This action is equivalent to setting the
i_nominal_specify parameter to 'on'.

5 Once the Nominal check box is selected, its Value field becomes editable. Enter 10 and select
mA from the unit drop-down list.

See Also
variables

More About
• “Variable Viewer” on page 8-18
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Frequency and Time Simulation Mode
In this section...
“Speeding Up Model Simulation” on page 7-29
“Variable Initialization for Frequency-and-Time Simulation” on page 7-29
“Limitations” on page 7-30
“Perform Sinusoidal Steady-State Analysis of a Model” on page 7-30

Frequency and time simulation mode speeds up simulation of systems with a single nominal
frequency by letting you increase the maximum step size for variable solvers. This mode also lets you
perform phasor analysis of such systems by using the blocks in the Periodic Operators sublibrary of
the Physical Signals library.

Depending on your task, you can switch between time and frequency-and-time simulation modes
without modifying the model. For example, use the time simulation mode to study transient effects,
and then switch to the frequency-and-time mode to perform the phasor analysis of a model.

Speeding Up Model Simulation
Frequency-and-time equation formulation is intended for linear and linear parameter-varying (LPV)
systems. It speeds up the simulation using a variable-step solver because the solver step size is no
longer limited by the period of the nominal frequency.

The frequency-and-time simulation mode is based on changing the equation formulation for a physical
network with a nominal frequency ω0 by dividing its variables into two categories:

• Time variables, which vary slowly relative to the nominal period 2π/ω0

• Frequency variables, which are sinusoidal and represent forced response at the nominal
frequency, x = dx + axcos(ω0t) + bxsin(ω0t)

In time simulation mode, the solver step size is typically limited to a small fraction of a period of the
nominal frequency. In frequency-and-time simulation mode, the representation of frequency, or fast,
variables as sinusoids allows the variable solver to take much larger steps. The speeding-up effect is
especially pronounced in complex machine systems that use three-phase Simscape Electrical™
blocks.

When you run a model in frequency-and-time simulation mode, the software automatically detects the
nominal frequency and determines which of the variables are fast (frequency) and which are slow
(time).

To benefit from improved performance, the time variables in the system should have slow dynamics.
If time variables have time constants comparable to, or smaller than, the nominal frequency period,
frequency-and-time simulation of such a system will be slow (due to the large number of timesteps
required to resolve these dynamics) and possibly inaccurate. In such cases, use the time simulation
mode instead.

Variable Initialization for Frequency-and-Time Simulation
Variable initialization for frequency-and-time equation formulation follows these rules:
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• For time variables and algebraic frequency variables, initialization targets and priorities are
preserved.

• For dynamic frequency variables, initialization priority is switched to None because the solver is
using the sinusoidal steady-state approximation for these variables.

Limitations
Frequency-and-time equation formulation is intended for systems with a single nominal frequency. In
other words:

• The model must have at least one sinusoidal source in its physical network.
• In case of multiple sinusoidal sources, they must all operate at the same frequency.
• Blocks outside the physical network, such as a Sine Wave block, are not considered valid

sinusoidal sources.

If you try to run a frequency-and-time simulation on a model that does not meet the above criteria,
you get an error message.

Perform Sinusoidal Steady-State Analysis of a Model
This example shows how you can deploy different simulation modes on the same model, depending on
the type of analysis you want to perform.

The transmission line model used in this example is built from 50 identical blocks, each block
representing a single T-section segment. For more information, see “Transmission Line”. The model
has one sinusoidal source (AC Voltage) and operates at a nominal frequency 200 MHz, which makes it
a good candidate for frequency-and-time simulation.

1 Open the Transmission Line example model by typing ssc_transmission_line in the MATLAB
Command Window.

Expand the Voltage Sensor subsystem, which consists of a Voltage Sensor block, a Solver
Configuration block, and a PS-Simulink Converter block connected to the scope.
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2 To analyze the transient behavior of the model, run it in the time simulation mode.

Open the Solver Configuration block dialog box and verify that the Equation formulation
parameter is set to Time. Simulate the model.

You can observe the transmission delay from the simulation results.
3 To perform the phasor analysis, switch to frequency-and-time simulation mode.

Open the Solver Configuration block dialog box and set the Equation formulation parameter to
Frequency and time. Simulate the model.
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Notice that in frequency-and-time mode the simulation starts in sinusoidal steady state.
4 To determine the amplitude and phase of the base frequency, connect the PS Harmonic Estimator

(Amplitude, Phase) block to the voltage sensor output. Add the respective scopes.

5 Open the PS Harmonic Estimator (Amplitude, Phase) block dialog box and set the Base
frequency parameter to 200 MHz, to match the nominal frequency of the model. Also set the
Minimum amplitude for phase detection parameter unit to V, to match the unit of the input
signal.

6 Double-click the PS-Simulink Converter block connected to port A of the PS Harmonic Estimator
(Amplitude, Phase) block. Set the Output signal unit parameter to V.

7 Simulate the model.
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8 The logged simulation data for frequency variables contains subnodes that let you examine the
variable instantaneous value, amplitude, phase, and offset data separately.
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Note If you use the workflow of live-streaming the data to Simulation Data Inspector, the
recorded simulation data does not contain these subnodes. To view the additional subnodes for
frequency variables, clear the Record data in Simulation Data Inspector check box and rerun
the simulation.

See Also
PS Harmonic Estimator (Amplitude, Phase) | Solver Configuration

More About
• “Phasor-Mode Simulation Using Simscape Components” (Simscape Electrical)
• “About the Simscape Results Explorer” on page 13-21
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Troubleshooting Simulation Errors
In this section...
“Troubleshooting Tips and Techniques” on page 7-35
“System Configuration Errors” on page 7-35
“Numerical Simulation Issues” on page 7-37
“Initial Conditions Solve Failure” on page 7-38
“Transient Simulation Issues” on page 7-38

Troubleshooting Tips and Techniques
Simscape simulations can stop before completion with one or more error messages. This section
discusses generic error types and error-fixing strategies. You might find the previous section, “How
Simscape Simulation Works” on page 7-6, useful for identifying and tracing errors.

If a simulation failed:

• Review the model configuration. If your error message contains a list of blocks, look at these
blocks first. Also look for:

• Wrong connections — Verify that the model makes sense as a physical system. For example,
look for actuators connected against each other, so that they try to move in opposite directions,
or incorrect connections to reference nodes that prevent movement. In electrical circuits,
verify polarity and connections to ground.

• Wrong units — Simscape unit manager offers great flexibility in using physical units. However,
you must exercise care in specifying the correct units, especially in the Simulink-PS Converter
and PS-Simulink Converter blocks. Start analyzing the circuit by opening all the converter
blocks and checking the correctness of specified units.

• Try to simplify the circuit. Unnecessary circuit complexity is the most common cause of simulation
errors.

• Break the system into subsystems and test every unit until you are positive that the unit behaves
as expected.

• Build the system by gradually increasing its complexity.

It is recommended that you build, simulate, and test your model incrementally. Start with an
idealized, simplified model of your system, simulate it, verify that it works the way you expected.
Then incrementally make your model more realistic, factoring in effects such as friction loss, motor
shaft compliance, hard stops, and the other things that describe real-world phenomena. Simulate and
test your model at every incremental step. Use subsystems to capture the model hierarchy, and
simulate and test your subsystems separately before testing the whole model configuration. This
approach helps you keep your models well organized and makes it easier to troubleshoot them.

System Configuration Errors
• “Missing Solver Configuration Block” on page 7-36
• “Extra Fluid or Gas Properties Block” on page 7-36
• “Missing Reference Block” on page 7-36
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• “Basic Errors in Physical System Representation” on page 7-36

Missing Solver Configuration Block

Each topologically distinct Simscape block diagram requires exactly one Solver Configuration block
to be connected to it. The Solver Configuration block specifies the global environment information
and provides parameters for the solver that your model needs before you can begin simulation.

If you get an error message about a missing Solver Configuration block, open the Simscape Utilities
library and add the Solver Configuration block anywhere on the circuit.

Extra Fluid or Gas Properties Block

If your model contains hydraulic elements, each topologically distinct hydraulic circuit in a diagram
requires a Custom Hydraulic Fluid block (or Hydraulic Fluid block, available with Simscape Fluids
block libraries) to be connected to it. These blocks define the fluid properties that act as global
parameters for all the blocks connected to the hydraulic circuit. If no hydraulic fluid block is attached
to a loop, the hydraulic blocks in this loop use the default fluid. However, more than one hydraulic
fluid block in a loop generates an error.

Similarly, more than one Thermal Liquid Settings (TL) block in a thermal liquid circuit, Two-Phase
Fluid Properties (2P) block in a two-phase fluid circuit, or Gas Properties (G) block in a gas circuit
generates an error.

If you get an error message about too many domain-specific global parameter blocks attached to the
network, look for an extra Hydraulic Fluid block, Custom Hydraulic Fluid block, Thermal Liquid
Settings (TL) block, Two-Phase Fluid Properties (2P) block, or Gas Properties (G) block and remove it.

Missing Reference Block

Simscape libraries contain domain-specific reference blocks, which represent reference points for the
conserving ports of the appropriate type. For example, each topologically distinct electrical circuit
must contain at least one Electrical Reference block, which represents connection to ground.
Similarly, hydraulic conserving ports of all the blocks that are referenced to atmosphere (for example,
suction ports of hydraulic pumps, or return ports of valves, cylinders, pipelines, if they are considered
directly connected to atmosphere) must be connected to a Hydraulic Reference block, which
represents connection to atmospheric pressure. Mechanical translational ports that are rigidly
clamped to the frame (ground) must be connected to a Mechanical Translational Reference block, and
so on.

If you get an error message about a missing reference block, or node, check your system
configuration and add the appropriate reference block based on the rules described above. The
missing reference node diagnostic messages include information about the particular block and
variable that needs a reference node. This is especially helpful when multiple domains are involved in
the model. For more information and examples of best modeling practices, see “Grounding Rules” on
page 1-28.

Basic Errors in Physical System Representation

Physical systems are represented in the Simscape modeling environment as Physical Networks
according to the Kirchhoff's generalized circuit laws. Certain model configurations violate these laws
and are therefore illegal. There are two broad violations:

• Sources of domain-specific Across variable connected in parallel (for example, voltage sources,
hydraulic pressure sources, or velocity sources)
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• Sources of domain-specific Through variable connected in series (for example, electric current
sources, hydraulic flow rate sources, force or torque sources)

These configurations are impossible in the real world and illegal theoretically. If your model contains
such a configuration, upon simulation the solver issues an error followed by a list of blocks, as shown
in the following example.

Example

The model shown in the following illustration contains two Ideal Translational Velocity Sources
connected in parallel. This produces a loop of independent velocity sources, and the solver cannot
construct a consistent system of equations for the circuit.

When you try to simulate the model, the solver issues an error message with links to the Ideal
Translational Velocity Source and Ideal Translational Velocity Source1 blocks. To fix the circuit, you
can either replace the two velocity sources by a single Ideal Translational Velocity Source block, or
add a Translational Damper block between them.

Numerical Simulation Issues
• “Dependent Dynamic States” on page 7-37
• “Parameter Discontinuities” on page 7-38

Numerical simulation issues can be either a result of certain circuit configurations or of parameter
discontinuities.

Dependent Dynamic States

Certain circuit configurations can result in dependent dynamic states, or the so-called higher-index
differential algebraic equations (DAEs). Simscape solver can handle dependencies among dynamic
states that are linear in the states and independent of time and inputs to the system. For example,
capacitors connected in parallel or inductors connected in series will not cause any problems. Other
circuit configurations with dependent dynamic states, in certain cases, may slow down the simulation
or lead to an error when the solver fails to initialize.

Problems may occur when dynamic states have a nonlinear algebraic relationship. An example is two
inertias connected by a nonlinear gear constraint, such as an elliptical gear. In case of simulation
failure, the Simscape solver may be able to identify the components involved, and provide an error
message with links to the blocks and to the equations within each block.
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Parameter Discontinuities

Nonlinear parameters, dependent on time or other variables, may also lead to numerical simulation
issues as a result of parameter discontinuity. These issues usually manifest themselves at the
transient initialization stage (see “Transient Simulation Issues” on page 7-38).

Initial Conditions Solve Failure
The initial conditions solve, which solves for all system variables (with initial conditions specified on
some system variables), may fail. This has several possible causes:

• System configuration error. In this case, the Simulation Diagnostics window usually contains
additional, more specific, error messages, such as a missing reference node, or a warning about
the component equations, followed by a list of components involved. See “System Configuration
Errors” on page 7-35 for more information.

• Dependent dynamic state. In this case, the Simulation Diagnostics window also may contain
additional, more specific, error messages, such as a warning about the component equations,
followed by a list of components involved. See “Dependent Dynamic States” on page 7-37 for more
information.

• The residual tolerance may be too tight to produce a consistent solution to the algebraic
constraints at the beginning of simulation. You can try to increase the Consistency Tolerance
parameter value (that is, relax the tolerance) in the Solver Configuration block.

If the Simulation Diagnostics window has other, more specific, error messages, address them first and
try rerunning the simulation. See also “Troubleshooting Tips and Techniques” on page 7-35.

Transient Simulation Issues
• “Transient Initialization Not Converging” on page 7-38
• “Step-Size-Related Errors — Dependent States — High Stiffness” on page 7-38

Transient initialization happens at the beginning of simulation (after computing the initial conditions)
or after a subsequent event, such as a discontinuity (for example, when a hard stop hits the stop). It is
performed by fixing all dynamic variables and solving for algebraic variables and derivatives of
dynamic variables. The goal of transient initialization is to provide a consistent set of initial
conditions for the next transient solve step.

Transient Initialization Not Converging

Error messages stating that transient initialization failed to converge, or that a set of consistent
initial conditions could not be generated, indicate transient initialization issues. They can be a result
of parameter discontinuity. Review your model to find the possible sources of discontinuity. See also
“Troubleshooting Tips and Techniques” on page 7-35.

You can also try to decrease the Consistency Tolerance parameter value (that is, tighten the
tolerance) in the Solver Configuration block.

Step-Size-Related Errors — Dependent States — High Stiffness

A typical step-size-related error message may state that the system is unable to reduce the step size
without violating the minimum step size for a certain number of consecutive times. This error
message indicates numerical difficulties in solving the Differential Algebraic Equations (DAEs) for the
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model. This might be caused by dependent dynamic states (higher-index DAEs) or by the high
stiffness of the system. You can try the following:

• Tighten the solver tolerance (decrease the Relative Tolerance parameter value in the
Configuration Parameters dialog box)

• Specify a value, other than auto, for the Absolute Tolerance parameter in the Configuration
Parameters dialog box. Experiment with this parameter value.

• Tighten the residual tolerance (decrease the Consistency Tolerance parameter value in the
Solver Configuration block)

• Increase the value of the Number of consecutive min step size violations allowed parameter
in the Configuration Parameters dialog box (set it to a value greater than the number of
consecutive step size violations given in the error message)

• Review the model configuration and try to simplify the circuit, or add small parasitic terms to your
circuit to avoid dependent dynamic states. For more information, see “Numerical Simulation
Issues” on page 7-37.
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Limitations

In this section...
“Sample Time and Solver Restrictions” on page 7-40
“Algebraic Loops” on page 7-40
“Unsupported Simulink Tools and Features” on page 7-41
“Restricted Simulink Tools” on page 7-41
“Simulink Tools Not Compatible with Simscape Blocks” on page 7-42
“Code Generation” on page 7-42

Sample Time and Solver Restrictions
The default sample times of Simscape blocks are continuous. You cannot simulate Simscape blocks
with discrete solvers using the default sample times.

If you switch to a local solver in the Solver Configuration block, the states of the associated physical
network become discrete. If there are no continuous Simulink or Simscape states anywhere in a
model, you are free to use a discrete solver to simulate the model.

You cannot override the sample time of a nonvirtual subsystem containing Simscape blocks.

Algebraic Loops
A Simscape physical network should not exist within a Simulink algebraic loop. This means that you
should not directly connect an output of a PS-Simulink Converter block to an input of a Simulink-PS
Converter block of the same physical network.

For example, the following model contains a direct feedthrough between the PS-Simulink Converter
block and the Simulink-PS Converter block (highlighted in magenta). To avoid the algebraic loop, you
can insert a Transfer Function block anywhere along the highlighted loop.

A better way to avoid an algebraic loop without introducing additional dynamics is shown in the
modified model below.
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Unsupported Simulink Tools and Features
Certain Simulink tools and features do not work with Simscape software:

• Exporting a model to a format used by an earlier version (Simulation > Save > Previous
Version) is not supported for models containing Simscape blocks.

• The Simulink Profiler tool does not work with Simscape models.
• Physical signals and physical connection lines between conserving ports are different from

Simulink signals. Therefore, the Viewers and Generators Manager tool and the signal label
functionality are not supported.

Restricted Simulink Tools
Certain Simulink tools are restricted for use with Simscape software:

• You can use the Simulink set_param and get_param commands to set or get Simscape block
parameters, if the parameters correspond to fields in the block dialog box. MathWorks® does not
recommend that you use these commands to find or change any other block parameters.

If you make changes to block parameters at the command line, run your model first before saving
it. Otherwise, you might save invalid block parameters. Any block parameter changes that you
make with set_param are not validated unless you run the model.

• Simscape blocks accept Simulink.Parameter objects as parameter values in get_param and
set_param, within the restrictions specified here.

• Enabled subsystems can contain Simscape blocks. Always set the States when enabling
parameter in the Enable dialog to held for the subsystem's Enable port.

Setting States when enabling to reset is not supported and can lead to fatal simulation errors.
• You can place Simscape blocks within nonvirtual subsystems that support continuous states.

Nonvirtual subsystems that support continuous states include Enabled subsystems and Atomic
subsystems. However, physical connections and physical signals must not cross nonvirtual
boundaries. When placing Simscape blocks in a nonvirtual subsystem, make sure to place all
blocks belonging to a given Physical Network in the same nonvirtual subsystem.

• Nonvirtual subsystems that do not support continuous sample time blocks (such as If Action, For
Iterator, Function-Call, Triggered, While Iterator, and so on) cannot contain Simscape blocks.
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• An atomic subsystem with a user-specified (noninherited) sample time cannot contain Simscape
blocks.

• Simulink configurable subsystems work with Simscape blocks only if all of the block choices have
consistent port signatures.

• When using operating point to save and restore simulations of models, you cannot make any
changes to the Simscape blocks in the model between the time at which you save the
ModelOperatingPoint object and the time at which you restore the simulation using the
ModelOperatingPoint object. For more information, see “Limitations of Saving and Restoring
Operating Point” (Simulink).

This is an extension of the Simulink limitation prohibiting structural changes to the model
between these two points in time. Changes to Simscape block parameters can cause equation
changes and result in changes to the state representation. Therefore, modifying parameters of
Simscape blocks between saving and restoring the SimState is not allowed.

• Linearization with the Simulink linmod function or with equivalent Simulink Control Design™
functions and graphical interfaces is not supported with Simscape models if you use local solvers.

• Model referencing is supported, with some restrictions:

• All Physical connection lines must be contained within the referenced model. Such lines cannot
cross the boundary of the referenced model subsystem in the referencing model.

• The referencing model and the referenced model must use the same solver.
• You cannot create Simulink signal objects directly on the PS-Simulink Converter block outputs.

Insert a Signal Conversion block after the output port of a PS-Simulink Converter block and
specify the signal object on the output of the Signal Conversion block instead.

Simulink Tools Not Compatible with Simscape Blocks
Some Simulink tools and features do not work with Simscape blocks:

• Execution order tags do not appear on Simscape blocks.
• Simscape blocks do not invoke user-defined callbacks.
• You cannot set breakpoints on Simscape blocks.
• Reusable subsystems cannot contain Simscape blocks.
• You cannot use the Simulink Fixed-Point Tool with Simscape blocks.
• The Report Generator reports Simscape block properties incompletely.

Code Generation
Code generation is supported for Simscape physical modeling software and its family of add-on
products. However, there are restrictions on code generated from Simscape models.

• Code reuse is not supported.
• Encapsulated C++ code generation is not supported.
• Tunable parameters are not supported.
• Run-time parameter inlining ignores global exceptions.
• MaxStackSize is not supported.
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• Simulation of Simscape models on fixed-point processors is not supported.
• Block diagnostics in error messages are not supported. This means that if you get an error

message from simulating generated code, it does not contain a list of blocks involved.
• Conversion of models or subsystems containing Simscape blocks to S-functions is not supported.

“Code Generation” describes Simscape code generation features. “Restricted Simulink Tools” on page
7-41 describes limitations on model referencing.

There are variations and exceptions as well in the code generation features of the add-on products
based on Simscape platform. For details, see documentation for individual add-on products.

Code Generation and Fixed-Step Solvers

Most code generation options for Simscape models require the use of fixed-step Simulink solvers.
This table summarizes the available solver choices, depending on how you generate code.

Code Generation Option Solver Choices
Accelerator mode
Rapid Accelerator mode

Variable-step or fixed-step

Simulink Coder™ software: RSim Target* Variable-step or fixed-step
Simulink Coder software: Targets other than RSim Fixed-step only

* For the RSim Target, Simscape software supports only the Simulink solver module. In the model
Configuration Parameters dialog box, see the Code Generation: RSim Target: Solver selection
menu. The default is automatic selection, which might fail to choose the Simulink solver module.
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Variable Initialization and Operating
Points

• “Block-Level Variable Initialization” on page 8-2
• “Set Priority and Initial Target for Block Variables” on page 8-4
• “Initialize Variables for a Mass-Spring-Damper System” on page 8-6
• “Variable Viewer” on page 8-18
• “Using Operating Point Data for Model Initialization” on page 8-26
• “Initialize Model Using Operating Point from Logged Simulation Data” on page 8-29
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Block-Level Variable Initialization

In this section...
“Initializing Block Variables for Model Simulation” on page 8-2
“Variable Initialization Priority” on page 8-2
“Suggested Workflow” on page 8-3

Initializing Block Variables for Model Simulation
At the beginning of simulation (t = 0), the solver computes the initial conditions to determine the
simulation starting point, as described in “Initial Conditions Computation” on page 7-8. Finding a
solution means finding initial values for all system variables. You can affect the initial conditions
computation by block-level variable initialization, that is, by specifying the priority and target initial
values for certain variables on the Variables tab of the respective block dialog boxes.

The values you specify during block-level variable initialization are not the actual values of the
respective variables, but rather their target values at the beginning of simulation (t = 0). Depending
on the results of the solve, some of these targets may or may not be satisfied.

The solver tries to find a solution that:

• Exactly satisfies all the model equations
• Exactly satisfies all the high-priority targets
• Approximates the low-priority targets as closely as possible (as a result, some of the low-priority

targets might be satisfied exactly, the others are approximated)

If the solver cannot find a solution that exactly satisfies all the high-priority targets, it issues a
warning and enters the second stage of the solve process, where it tries to find a solution by
approximating both the high-priority and the low-priority targets as closely as possible.

If you have selected the Start simulation from steady state check box in the Solver block dialog
box, the solver attempts to find the steady state (when the system variables are no longer changing
with time). If the steady-state solve succeeds, the state found is some steady state (within tolerance),
but not necessarily the state expected from the given initial conditions. In other words, if simulation
starts from steady state, even the high-priority variable targets might no longer be satisfied at the
start of simulation. However, if the model has more than one steady state, the variable targets you
specify can affect which steady-state solution is selected by the solver.

After you initialize the block variables and prior to simulating the model, you can open the Variable
Viewer to see which of the variable targets have been satisfied. The Variable Viewer displays the
actual initial values of the variables obtained as a result of the solve, along with the variable target
values, priority, and other information about the variable. For details, see “Variable Viewer” on page
8-18.

Variable Initialization Priority
During block-level variable initialization, you specify the variable beginning value, unit, and the
initialization priority. The priority can be one of the following:

8 Variable Initialization and Operating Points

8-2



• None — If a variable has priority of none, the initialization algorithm starts at the beginning value
for this variable but does not remember this value as it finds the solution for the system of
equations. The solver does not try to satisfy any specific initial value for a variable with no priority.

• Low — If a variable has low priority, the beginning value becomes a target for the algorithm and
the algorithm tries to stay close to the target. The solver tries to approximate the target value of
this variable as closely as possible when finding a solution. Depending on the results of the solve
for high-priority variables, some of the low-priority targets might be met exactly, the others are
approximated.

• High — If a variable has high priority, the beginning value becomes a target for the algorithm and
the algorithm tries to meet the target exactly. The solver tries to find a solution where the actual
initial values of all high-priority variables exactly satisfy their target values.

The default initialization priority, beginning value, and unit for each of the block variables come from
the underlying Simscape component file. For each individual block in your model, you can override
these default settings by opening the Variables tab of the block dialog box, selecting the Override
check box next to a variable name and specifying your own values for that variable.

When you specify too many high-priority targets for system variables, it is possible to over-specify
your model. In this case, the solver might not be able to find a solution that exactly satisfies all the
high-priority targets, or even fail to find a solution altogether. For an example of how you can deal
with over-specification by using the Variable Viewer and changing the variable priority and targets,
see “Initialize Variables for a Mass-Spring-Damper System” on page 8-6.

For detailed information on how to specify variable priority and targets in block dialog boxes, see
“Set Priority and Initial Target for Block Variables” on page 8-4.

Suggested Workflow
1 Using the Variables tab of the respective block dialog boxes, specify the variable targets for

initialization, by setting the priority, target values, and units for block variables as required by
your model.

2 Open and refresh the Variable Viewer to see which of the initial targets have been satisfied.
Although the viewer does not simulate the model, it runs the simulation for 0 seconds to initialize
it, and therefore the model must be in an executable state.

3 If initialization fails, or you are not satisfied with the results, iterate by changing the block
variable target values and priority, then refreshing the viewer.

4 When satisfied with initialization, run the simulation to see the results.

See Also

More About
• “Set Priority and Initial Target for Block Variables” on page 8-4
• “Initialize Variables for a Mass-Spring-Damper System” on page 8-6
• “Variable Viewer” on page 8-18
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Set Priority and Initial Target for Block Variables
When you open the Variables tab of a block dialog box, it lists all the public variables specified in the
underlying component file, along with priority, beginning (target) value, and unit. For example, if you
add a Translational Spring block to your model, double-click it to open its dialog box, and then click
the Variables tab, it looks like this:

For details on these variables and their usage in the block equations, click the Source code link in
the block dialog box to view the underlying Simscape source file.

Note The Source code link is available for all the Foundation library blocks that have a Variables
tab. Blocks from the add-on products, like Simscape Electrical or Simscape Fluids, do not have a
Source code link in the block dialog box. See the block reference page for information on relevant
equations and specific initialization considerations.

To specify the initial deformation of the spring, select the Override check box next to the
Deformation variable, to indicate that you are overriding the default values. Select the initialization
priority for the variable, by setting its Priority drop-down to High, Low, or None. Type a new number
into the Beginning Value field and change the unit, if desired. The Unit drop-down lists contains all
the units defined in the unit registry that are commensurate with the one specified in the variable
declaration. In the following dialog box, Deformation is specified as a high-priority variable with the
initial target of 20 mm.
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If you clear the Override check box next to a variable name, its Priority, Beginning Value, and
Unit fields switch back to defaults specified in the component file. However, if you select the check
box again, these fields will retain their last specified value for when they were overridden.

Note The variables included in Variables settings are run-time configurable by default. You can tune
a block-level variable-initialization target value between simulation runs if you specify the target
value using a variable that you save to the MATLAB workspace.

For more information, see “Run-Time Configurability for Block-Level Variable Initialization Target
Values” on page 10-3.

See Also

More About
• “Initialize Variables for a Mass-Spring-Damper System” on page 8-6
• “Block-Level Variable Initialization” on page 8-2
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Initialize Variables for a Mass-Spring-Damper System
This example shows how you can use block variable initialization, and how it affects the simulation
results of a simple mechanical system.

The model is a classical unforced mass-spring-damper system, with the oscillations of the mass
caused by the initial deformation of the spring.

Create and Set Up the Model

1 Create a simple mass-spring-damper system. Use the Mass, Translational Spring, Translational
Damper, Mechanical Translational Reference, Ideal Translational Motion Sensor, PS-Simulink
Converter, Solver Configuration, and Scope blocks, and connect them as shown in the following
illustration.

2 Prepare the model for simulation. On the top menu bar of the model window, select Simulation
> Model Configuration Parameters. On the Solver pane of the Configuration Parameters
dialog box, set Solver to ode23t (mod.stiff/Trapezoidal) and Max step size to 0.2. Also
adjust the Simulation time to be between 0 and 2 seconds, by setting Stop time to 2.0.

3 Specify the initial deformation of the spring. Double-click the Translational Spring block. In the
block dialog box, click the Variables tab, and then select the check box next to the Deformation
variable. Change its Priority to High. Change the Beginning Value to 0.1. Leave the Unit
unchanged as m.
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4 Adjust the initial position of the sensor, to compensate for the spring deformation. Double-click
the Ideal Translational Motion Sensor block and set its Initial position parameter value to 0.1
m as well. This way, when you simulate the model, mass oscillations center around 0.

5 Simulate the model.

6 Open the Variable Viewer. In the model window, on the Debug tab, click Diagnostics >
Simscape > Variable Viewer.
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The Translational Spring variable x, in the bottom row, has high priority and the target value of
0.1 m. This is the Deformation variable that you have just set up in the block dialog box. Its
actual start value matches its target value, and therefore its Status column displays a green
circle.

The other high-priority variable in this model is the position, x, of the Ideal Translational Motion
Sensor block, which is set inside the component file because it is necessary for the correct
operation of the sensor. Its actual start value also matches its target value, and its Status column
also displays a green circle.

The rest of the variables in the model do not have initialization priority specified, therefore their
Status column also displays green circles. The overall status at the bottom of the Variable Viewer
window displays a green circle as well, and says that all the variable targets are satisfied.

Change Initialization Targets

You can now see how specifying different variable targets affects system initialization and simulation
results.

1 Specify the initial velocity of the mass. Double-click the Mass block, go to the Variables tab,
select the check box next to the Velocity variable, change its Priority to High, and enter a
beginning value of 10. Keep the unit m/s.
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When you change variable priorities and targets or adjust the block parameters, the results in
the Variable Viewer are not updated automatically. Instead, the Refresh button displays a
warning symbol (yellow triangle), and the timestamp at the bottom of the viewer window turns
red to indicate that the data in the viewer does not reflect the latest model changes.

2
Refresh the Variable Viewer by clicking .
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You can see that the solver has found a different initial solution, which satisfies your variable
targets for spring deformation and mass velocity. The Status column displays green circles, and
the overall status at the bottom of the Variable Viewer window also displays a green circle and
says that all the variable targets are satisfied.

3 Notice that when you refreshed the Variable Viewer, the scopes turned blank. This happens
because solver runs the simulation for 0 seconds to find the initial solution and display it in the
Variable Viewer.

Rerun the simulation and examine the Velocity and Position scope windows, to see the effect of
the new initial value for mass velocity on the simulation results.
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Deal with Over-Specification

As you specify additional variable targets, sometimes it is possible to over-specify the constraints.

1 Double-click the Translational Damper block, go to the Variables tab, select the check box next
to the Force variable, change its Priority to High, and enter a beginning value of 200. Keep the
unit N.

2 Refresh the Variable Viewer.
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The overall status at the bottom of the Variable Viewer window now displays a red square and
says that the solver is unable to satisfy all the high-priority variable targets. There are red
squares in the Status column for the two high-priority variables with targets not satisfied, as
well as for their parent blocks.

Notice that the solver has been able to find a solution for model initialization. If you rerun the
simulation, it runs without errors and you can see the new simulation results.
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However, the Variable Viewer shows that the model initialization solution does not satisfy your
target values for block variables. This happens because placing high-priority constraints on all
three elements of the mass-spring-damper system results in a conflict. You can resolve the over-
specification issue by relaxing the priority of some of the conflicting variable targets.

3 Double-click the Translational Damper block again, go to the Variables tab, and change the
priority of the Force variable to Low.

4 Refresh the Variable Viewer.

 Initialize Variables for a Mass-Spring-Damper System

8-13



The overall status at the bottom of the Variable Viewer window now displays a yellow triangle
and says that all the high-priority targets are satisfied, but some of the low-priority targets are
not satisfied. There are now two yellow triangles in the status column: one for the low-priority
force variable f and one for its parent block, Translational Damper.

Essentially, the solution found in this case is the same as when you previously specified high-
priority target for the mass velocity on page 8-0 , and the simulation results are the same.

8 Variable Initialization and Operating Points

8-14



5 Another way to deal with over-specification is to keep the high priority on the damper force and
relax the priority on mass initial velocity. Double-click the Translational Damper block again, go
to the Variables tab, and change the priority of the Force variable back to High. Then double-
click the Mass block, go to the Variables tab, and change the priority of the Velocity variable to
Low.

6 Refresh the Variable Viewer.
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Again, the Variable Viewer status says that all the high-priority targets have been satisfied and
that some of the low-priority targets are not satisfied. However, because you changed the
variable priorities, the solver now tried to satisfy the initial force on the damper rather than the
mass velocity, and the solution is different in this case, as are the simulation results.
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See Also

More About
• “Block-Level Variable Initialization” on page 8-2
• “Set Priority and Initial Target for Block Variables” on page 8-4
• “Variable Viewer” on page 8-18
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Variable Viewer
In this section...
“About Variable Viewer” on page 8-18
“Advanced Configuration” on page 8-20
“Switching Between Tree View and Flat View” on page 8-21
“Useful Filtering Techniques” on page 8-23
“Saving Viewer Configuration” on page 8-23
“Link to Block Diagram” on page 8-23
“Interaction with Model Updates and Simulation” on page 8-24

About Variable Viewer
Prior to simulating the model, you can use the Variable Viewer to check the results of the initial
conditions computation for the model and to see which of the block-level variable initialization targets
have been satisfied. The Variable Viewer displays the variable priority and target values, where
specified, along with the actual initial values for all the variables obtained as a result of the solve.

To open the Variable Viewer, in the model window, on the Debug tab, click Diagnostics > Simscape
> Variable Viewer.

Note If you open a model, and then open the Variable Viewer before simulating the model, then the

viewer does not contain any data. The Refresh button displays a warning symbol ( ), and a
message at the top of the viewer window tells you to click the Refresh button to populate the viewer
with data.

The Variable Viewer is a table, its rows listing all the blocks in the model and all the public variables
under each block, and the columns providing the initialization status, priority, target and actual start
values, and other information for each variable.

By default, the Variable Viewer opens in basic configuration, unless you specified another
configuration as a preferred one. (For information on specifying a preferred configuration, see
“Saving Viewer Configuration” on page 8-23.) In basic configuration, the Variable Viewer has the
following columns:
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Name Description
Status Initialization status of each variable, can be one of:

• Green circle — Displayed for variables with initialization targets satisfied,
and also for all variables with no initialization priority.

• Yellow triangle — Displayed for low-priority variables if the target is not
satisfied.

• Red square — Displayed for high-priority variables if the target is not
satisfied.

• Red cross — If initial condition solve fails, displayed for variables that could
not be initialized.

• Gray rectangle — Displayed when status is not available. This can happen,
for example, if model initialization failed, or if the viewer was left open
during diagram update. For more information, see “Interaction with Model
Updates and Simulation” on page 8-24.

Priority Variable initialization priority, as specified in the block dialog box or in the
underlying component file. For more information, see “Set Priority and Initial
Target for Block Variables” on page 8-4 and “Variable Priority for Model
Initialization”. If the variable has no initialization priority (None or
priority.none), then this field is empty.

Target Initial target value for a high-priority or low-priority variable. If the variable
has no initialization priority, then this field is empty.

Start The actual initial value of the variable computed by the solver.
Unit The variable base unit, common for all the values (Target, Prestart, and

Start). Simscape unit manager automatically converts all the values as needed.
For example, if you specified the target Beginning Value in the block dialog
box as 20 and the Unit as mm, the Variable Viewer displays the Target as 0.2
and Unit as m.

A downward-pointing arrow next to a column name indicates that you can filter the table rows based
on their value in this column. For more information on the filtering options, see “Useful Filtering
Techniques” on page 8-23.

The Variable Viewer toolbar buttons perform the following actions:

Displays the data in the Variable Viewer in tree view, with variable nodes grouped under the
parent port, block, and subsystem nodes. This is the default view.
Displays the data in the Variable Viewer in flat view, to minimize the number of rows in the
table. In flat view, the rows for parent nodes are not shown, and the table contains just one row
per variable, with the Name column including the complete path to the variable from the model
root. If the Variable Viewer is in flat view, the buttons that expand and collapse nodes are
disabled.
Expands all nodes, showing all variables under each block name. This button is available only if
the Variable Viewer is in tree view.
Collapses all variables under each block name. You can then expand the block nodes
individually to see the variables under this block. This button is available only if the Variable
Viewer is in tree view.
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Recomputes the initial conditions for the model and refreshes the values displayed in the
viewer. Use this button after adjusting the block parameter values, changing variable priorities
and targets, or updating the block diagram. If the data in the Variable Viewer is out of sync with

the model, he Refresh button displays a warning symbol ( ), and the timestamp at the
bottom of the viewer window turns red. For more information, see “Interaction with Model
Updates and Simulation” on page 8-24.
Clears all the column filtering options and displays all the rows in the table. For more
information, see “Useful Filtering Techniques” on page 8-23.
Shows the Variable Viewer in its default, basic, configuration, with only the following columns
displayed: Status, Priority, Target, Start, and Unit.
Shows the Variable Viewer in advanced configuration, with all the columns displayed. Use this
view for troubleshooting your model, for example, if the model initialization failed.
Saves the current Variable Viewer configuration. For more information, see “Saving Viewer
Configuration” on page 8-23.

Advanced Configuration
In most cases, the default Variable Viewer configuration contains sufficient data for viewing the
variable targets and verifying the model initialization results. However, if the solver is unable to
satisfy all the high-priority variable targets, or if the model initialization fails, the advanced Variable
Viewer configuration might provide additional data that can help you troubleshoot your model.

To switch to the advanced configuration, click  in the Variable Viewer toolbar.

In advanced configuration, the Variable Viewer displays the following additional columns:

Name Description
Prestart The value of the variable that the solver uses at the beginning of the initial

conditions solve process. For variables with no override of initialization priority
and targets, the prestart values come from the variable declaration in the
underlying component file. If the initialization process fails, these values can
help you determine the reason (for example, a prestart value of 0 for a variable
used as a denominator in a model equation). If a variable has an undesirable
prestart value, specify a better value as a low-priority (or no-priority)
initialization target, to make the solver start iterations from a different point.
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Name Description
Eliminated These variables are eliminated by the software prior to numerical integration

and are not used in solving the system. Prestart values for these variables have
no effect on the system solution. However, you can set the initialization priority
and targets on these variables, in which case their targets will be represented
in terms of the variables that are retained by the solver.

Determined The values of these variables depend on the system inputs, or their values are
predetermined based on the analysis of equations. Therefore, specifying
initialization priority and targets for these variables has little or no impact on
system solution. Also, if you specify a high-priority target for a predetermined
variable, the solver most likely will not be able to satisfy this target but will
spend extra time trying to find a second-stage solution.

Differential Time derivatives of these variables appear in equations. These variables add
dynamics to the system and can produce independent states. Therefore, these
variables are more likely to require high initialization priority.

Representation If frequency-and-time simulation mode is turned on, indicates how the solver
marks the variables: Frequency ("fast") or Time ("slow"). For more
information, see “Frequency and Time Simulation Mode” on page 7-29. In
regular simulation, all variables are marked Time.

Nominal Nominal value of the variable. For more information, see “System Scaling by
Nominal Values” on page 7-24.

Nominal unit Physical unit associated with the nominal value of the variable. For more
information, see “System Scaling by Nominal Values” on page 7-24.

Nominal source Source of the nominal value and unit: Block, Model, Derived, or Fixed. For
more information, see “Possible Sources of Nominal Values and Their
Evaluation Order” on page 7-24.

You can change the default order of columns by clicking a column heading and dragging it, while
holding down the mouse button, to the desired location. You can also hide columns by right-clicking
their headers and selecting Hide This Column from the context menu, or clearing the check mark

next to a column name. Clicking  or  in the Variable Viewer toolbar restores the default basic
or advanced layout, respectively.

Switching Between Tree View and Flat View
You can control the number of rows in the Variable Viewer by switching between the tree view (the
default) and the flat view. By default, the Variable Viewer opens in tree view, with variable nodes
grouped under the parent port, block, and subsystem nodes. Therefore, the Variable Viewer table
contains the rows for the parent nodes (ports, blocks, and subsystems) in addition to the rows that
correspond to all the public variables. Only the rows that represent variables contain data such as
targets and actual values. All rows display a status, with the status of a parent node being determined
by the status of its children variables: if all the children are green, then the row for the parent node
also displays a green circle in its Status column.

For example, in the Variable Viewer table below, the first row represents the Ideal Translational
Motion Sensor block, the second row — port C of this block, and only the third row contains the data
for the actual variable v (velocity at port C).
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To switch to the flat view, click  in the Variable Viewer toolbar.

In flat view, the rows for parent nodes are not shown, and the table contains just one row per
variable, with the Name column including the complete path to the variable from the top-level model.
For example, the first row of the Variable Viewer table in flat view represents the same variable v
(velocity at port C of the Ideal Translational Motion Sensor block), and the Name column includes
the names of its parents and shows the path to the variable. Flat view makes the Variable Viewer
table more compact.

If the Variable Viewer is in flat view, the buttons that expand and collapse nodes are disabled.
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To switch back to the tree view, click  in the Variable Viewer toolbar.

Useful Filtering Techniques
A downward-pointing arrow next to a column name indicates that you can filter the table rows based
on their value in this column.

To filter the rows, click the arrow, and then select or clear the check boxes in the drop-down list to
indicate which rows you want to be displayed, based on their value. Selecting All clears all the filters

for that column. To clear all filters for all columns, click  in the Variable Viewer toolbar.

For example, filtering on the Priority column values (selecting only the check boxes for HIGH and
LOW) lets you view all the targets and actual values in a compact format, which can be helpful for a
large model.

You might also find the following filtering techniques useful in troubleshooting your models:

• Filter the Differential column on TRUE, to display only the rows for differential variables. Time
derivatives of these variables appear in equations. These variables add dynamics to the system
and can produce independent states, therefore these variables are more likely to require high
initialization priority.

• Filter the Determined column on TRUE, to verify that these variables have no initialization
priority. The values of these variables are either predetermined by the equation analysis or depend
on the system inputs, and therefore specifying initialization priority and targets for these variables
has little or no effect on model initialization.

Saving Viewer Configuration

The Save Viewer Configuration button ( ) in the Variable Viewer toolbar lets you save the
following configuration preferences:

• Variable Viewer view type (tree or flat)
• Visible columns
• Ordering of columns
• Filters applied for all columns (both visible and hidden)
• Sorting on a specific column

If you save viewer configuration, then the next time you open Variable Viewer, for this or another
model, it will open with the same configuration. This behavior is consistent with saving other
MATLAB preferences.

Link to Block Diagram
The Variable Viewer tool provides direct linking to the block diagram. This link lets you highlight the
appropriate block, or easily go from a variable listed in the Variable Viewer to the Variables tab in
the corresponding block dialog box, to modify the variable priorities and targets.

When you right-click in the Name column of any row in the Variable Viewer table, a context menu
opens with the following options:
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• Go to block — Highlights the corresponding block in the block diagram, opening the appropriate
subsystem if needed. If the row represents a variable, highlights the parent block for this variable.

• Open block dialog — Opens the corresponding block dialog box (for a variable, opens the parent
block dialog box). In the block dialog box, click the Variables tab to view or modify the variable
priorities and targets. If the selected row represents a subsystem, this option is not available.

Interaction with Model Updates and Simulation
Opening the Variable Viewer does not trigger an automatic update. For complex models, computing
initial values for all the variables can last several minutes, and unnecessary updates could lead to loss

of productivity. You have to update the data explicitly by clicking the Refresh button ( ).

When you open the Variable Viewer, it gets populated with the data from the last simulation. The
status at the bottom of the viewer window displays the timestamp of its last update. If you have
modified the model since the viewer has last been updated, the Refresh button displays a warning

symbol ( ), and the timestamp at the bottom of the viewer window turns red to indicate that the
data in the viewer might not reflect the latest model changes.

If you open a model, and then open the Variable Viewer before simulating the model, then the viewer
does not contain any data. The Refresh button displays a warning symbol (yellow triangle), and a
message at the top of the viewer window tells you to click the Refresh button to populate the viewer
with data.

The Variable Viewer computes the actual initial values of the variables by running the simulation for 0
seconds. Therefore:

• The model must be in an executable state when you refresh the viewer, otherwise you get an error
message.
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• If the scopes are open, they turn blank every time you refresh the viewer. Rerun the simulation to
see the new results.

• If you rerun the simulation while the Variable Viewer is open, the results in the viewer are
automatically refreshed when the simulation starts running.

• If you change variable priorities and targets or adjust the block parameters, the results in the

viewer are not updated automatically. Refresh the viewer (by clicking  in the Variable Viewer
toolbar) to compute the new actual values of the variables and update the status.

• If you update block diagram (by selecting Modeling > Update Model in the model window)
while the Variable Viewer is open, the previously computed actual values become unavailable and
the Status column displays gray rectangles. The overall status at the bottom of the Variable
Viewer window is also not available. Refresh the viewer to compute the new actual values of the
variables and update the status.

See Also

More About
• “Block-Level Variable Initialization” on page 8-2
• “Initialize Variables for a Mass-Spring-Damper System” on page 8-6
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Using Operating Point Data for Model Initialization
In this section...
“Using Operating Points to Initialize Model Variables” on page 8-26
“Suggested Workflow” on page 8-26
“Extracting Variable Initialization Data into an Operating Point” on page 8-26
“Manipulating Operating Point Data” on page 8-27
“Applying Operating Point Data to Initialize Model” on page 8-27

Using Operating Points to Initialize Model Variables
Block-level variable initialization lets you specify the priority and target for individual block variables.
You can also initialize variables for a whole model from the saved operating point data.

You can use OperatingPoint objects to save sets of data necessary to initialize a model, manipulate
this data, and then use it to initialize another model, or the same model before another simulation
run. These sets of data contain a hierarchy of variable initialization targets. Each target consists of a
variable value, unit, and initialization priority, as described in “Variable Initialization Priority” on page
8-2.

The OperatingPoint data hierarchy is a tree, with nodes corresponding to subsystems and blocks
in a model. At the lowest level of the data tree, inside the block nodes, are the variable initialization
targets for that block.

When you use an OperatingPoint to initialize a model, the solver matches the OperatingPoint
data hierarchy to the model hierarchy and applies the initialization targets from the operating point
to the respective model variables. If there is no variable matching an operating point target, this
target is ignored. After applying all the data from the operating point, the solver performs model
initialization as described in “Initial Conditions Computation” on page 7-8.

After you initialize the variables and prior to simulating the model, you can open the Variable Viewer
to see which of the variable targets have been satisfied. For details, see “Variable Viewer” on page 8-
18.

Suggested Workflow
1 Create an OperatingPoint object by extracting data from the model or from the simulation log.

For more information, see “Extracting Variable Initialization Data into an Operating Point” on
page 8-26.

2 Modify the operating point data, if needed, by changing, adding, or removing targets and nodes.
For more information, see “Manipulating Operating Point Data” on page 8-27.

3 When satisfied with the operating point data, apply it to initialize another model, or the same
model for another simulation run. For more information, see “Applying Operating Point Data to
Initialize Model” on page 8-27.

Extracting Variable Initialization Data into an Operating Point
You can create an OperatingPoint object by extracting data from an existing model or from logged
simulation data. For more information, see simscape.op.create.
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You can extract variable initialization targets from a model in these ways:

• Start values — Initialize the model and use the variable targets corresponding to the Start values
in the Variable Viewer.

• Prestart values — Update the model and use the variable targets corresponding to the Prestart
values in the Variable Viewer.

• Cached data — Extract cached values of variable targets from a model that has been previously
initialized or simulated. You can specify Start or Prestart values. This method lets you save
time by avoiding repeated initialization of the model if the data that you want to extract has not
changed.

Alternatively, you can simulate the model while logging simulation data, and then extract variable
targets from the simulation log at a specified time, t:

• If the set of times recorded in the simulation data log contains an exact match for time t, then the
simscape.op.create function extracts these variable target values into the operating point
data.

• If there is no exact match, but t is between the minimum and maximum times in the simulation
data log, then the function uses linear interpolation to determine the target values.

• If t is less than the minimum time, then the function extracts the first value for each variable in
the simulation data log.

• If t is greater than the maximum time, then the function extracts the last value for each variable
in the simulation data log.

When you extract data from a model into an operating point, the elements in the data hierarchy of the
OperatingPoint object match the structure of the model. The operating point data tree has nodes
corresponding to subsystems and blocks in the model, with variable initialization targets for each
block at the lowest level of the data tree hierarchy. Similarly, when you extract an operating point
from logged simulation data, the operating point data tree matches the data tree of the simulation
log. For an example, see “Find Relative Path to Block Node in Operating Point Data Tree”.

Manipulating Operating Point Data
You can create an empty OperatingPoint object, or populate it with the data extracted from an
existing model or from logged simulation data.

Once you create an OperatingPoint object, you can modify it in these ways:

• Add targets one-by-one. For an example, see “Add Element to an Operating Point”.
• Copy and insert elements. For an example, see “Copy Element from an Operating Point”. You can

then insert the copied element into another operating point using the set function.
• Remove elements. For an example, see “Remove an Element from Operating Point Data”.
• Rename or move elements. For an example, see “Rename Element to Match New Block Name”.
• Merge operating points. For an example, see “Merge Two Operating Points”.

Applying Operating Point Data to Initialize Model
To initialize a model from an operating point:
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1 Open the Configuration Parameters dialog box.
2 On the Simscape pane, select the Enable operating point initialization check box.
3 In the Model operating point textbox, enter the name of the workspace variable associated

with an OperatingPoint object.

You can also use the equivalent command-line interface to set the model configuration parameters:

• set_param('model_name','SimscapeUseOperatingPoints','on');
• set_param('model_name','SimscapeOperatingPoint','op_name');

where model_name is the name of the model and op_name is the name of the OperatingPoint
object.

See Also
simscape.op.OperatingPoint | simscape.op.Target

More About
• “Initialize Model Using Operating Point from Logged Simulation Data” on page 8-29
• “Variable Viewer” on page 8-18
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Initialize Model Using Operating Point from Logged Simulation
Data

This example shows how you can create an OperatingPoint object from logged simulation data and
then use this operating point to initialize the model for a subsequent simulation run.

1 Open the Permanent Magnet DC Motor example model by typing ssc_dcmotor in the MATLAB
Command Window. This model has data logging enabled for the whole model, with the
Workspace variable name parameter set to simlog_ssc_dcmotor.

2 Simulate the model to log the simulation data.
3 Examine the simulation results in the Motor RPM scope window.

For the first 0.1 seconds, the motor has no external load, and the speed builds up to the no-load
value. Then at 0.1 seconds, the stall torque is applied as a load to the motor shaft.

4 Create an operating point from logged simulation data at 0.1 seconds after the start of
simulation:

op = simscape.op.create(simlog_ssc_dcmotor, 0.1)

op = 

  OperatingPoint with children:
  -----------------------------

 Initialize Model Using Operating Point from Logged Simulation Data
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   DC Motor
   DC Voltage
   ERef
   Load Torque
   MRRef Motor
   MRRef Torque
   Sensing
  -----------------------------

5 Enable model initialization from operating point:

set_param(gcs,'SimscapeUseOperatingPoints','on');

This command is equivalent to selecting the Enable operating point initialization check box
in the Simscape pane of the Configuration Parameters dialog box.

6 Specify the name of operating point:

set_param(gcs,'SimscapeOperatingPoint','op');

This command is equivalent to entering op in the Model operating point textbox.
7 Simulate the model. The simulation now starts with the full no-load speed.

See Also

More About
• “Log, Navigate, and Plot Simulation Data” on page 13-18
• “Using Operating Point Data for Model Initialization” on page 8-26
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Linearization and Trimming

• “Finding an Operating Point” on page 9-2
• “Linearizing at an Operating Point” on page 9-5
• “Linearize an Electronic Circuit” on page 9-10
• “Linearize a Plant Model for Use in Feedback Control Design” on page 9-18
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Finding an Operating Point
In this section...
“What Is an Operating Point?” on page 9-2
“Finding Operating Points in Physical Models” on page 9-2

What Is an Operating Point?
An operating point of a system is a dynamic configuration that satisfies design and use requirements
called operating specifications. You can express such operating specifications as requirements on the
system state x and inputs u. It is not always possible to find a dynamic state that satisfies all
operating conditions. Also, a system might have multiple operating points satisfying the same
requirements.

Operating points are essential for designing and implementing system controllers. You can optimize a
system at an operating point for performance, stability, safety, and reliability.

The most important and common type of operating point is a steady state, where some or all of the
system dynamic variables are constant.

Using Operating Points for Linearization

An important motive for finding operating points is linearization, which determines the system
response to small disturbances at an operating point. Linearization results influence the design of
feedback controllers to govern dynamic behavior near the operating point. A full linearization
analysis requires one or more system outputs, y, in addition to inputs.

See “Linearizing at an Operating Point” on page 9-5.

Example

A pilot flying an aircraft wants to find, for a given environment, a state of the aircraft engine and
control surfaces that produces level, constant-velocity, and constant-altitude flight relative to the
ground. The requirements of "level," "constant velocity," "constant altitude," and "relative to the
ground" constitute operating specifications. This operating point is a steady state of the aircraft
velocity, altitude, and orientation in space.

Finding Operating Points in Physical Models
You have a number of ways to find an operating point in a Simscape model. You can impose operating
specifications and isolate operating points using Simscape and Simulink features.

Tip To find a steady state, the Simscape steady-state solver is the most direct method. For a
comprehensive suite of operating point and linearization tools, Simulink Control Design software is
recommended.

To analyze operating points, you work with the full state vector of your model, which contains:

• Simulink components, which can be continuous or discrete.
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• Simscape components, which are continuous.

Whichever method that you choose to find an operating point, if you want to use it for linearization,
you must save the operating point information in the form of an operating point object, a simulation
time t0, or a state vector x0 and input vector u0.

• “Simulating in Time to Search for an Operating Point” on page 9-3
• “Using the Simscape Initial Condition Solver” on page 9-3
• “Using Simulink Control Design Techniques to Find Operating Points” on page 9-4
• “Using Sources to Find Operating Points Not Recommended” on page 9-4
• “Simulink trim Function Not Supported with Simscape Models” on page 9-4

Simulating in Time to Search for an Operating Point

One way to identify operating points is to simulate your model and inspect its state x and output y as
a time series.

1 In your Simscape model, set up sensor outputs for whatever block outputs you want to observe.
2 Connect Scope blocks, To Workspace blocks, or both, to your Simscape block outputs to observe

and record simulation behavior.
3 In the Data Import/Export pane of your model Configuration Parameters settings, select the

Time, States, and Output check boxes to record this simulation information in your workspace.

Using the Simscape Initial Condition Solver

Simscape software provides two workflows to initialize a physical model. The first solves for steady
state, where all differential variables have zero derivative. Using this approach you can search for
multiple steady states with the steady-state solver by varying the model inputs, parameters, and
initial conditions. The second approach is to directly specify initial conditions by specifying
initialization priority and targets for block variables. For more information on this approach, see
“Variable Initialization”.

To use the first approach, enable the steady-state solver:

1 In each, some, or all of the physical networks in your Simscape model, open the Solver
Configuration block.

2 In each block dialog box, select the Start simulation from steady state check box.
3 In the model Configuration Parameters settings, on the Data Import/Export pane, select the

States check box to record the time series of x values in your workspace.

If you also have input signals u in the model, you can capture those inputs by connecting To
Workspace blocks to the input Simulink signal lines.

4 Close these dialog boxes and start simulation.

The first vector of values x(t=0) that you capture during simulation reflects the steady state x0 that
the Simscape solver identified.

Tip Finding an initial steady state is part of the nondefault Simscape simulation sequence. See
“Initial Conditions Computation” on page 7-8.
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You can simplify the initial steady-state computation by setting the simulation time to 0. The
simulation then solves for one time step only (time zero) and returns a single state vector x(t=0).

Using Simulink Control Design Techniques to Find Operating Points

You can use Simulink Control Design software to find operating points for models with Simscape
components. Simulink Control Design provides both command-line and graphical interfaces for
finding and analyzing operating points.

For more information, see “Find Steady-State Operating Points for Simscape Models” (Simulink
Control Design).

Using Sources to Find Operating Points Not Recommended

You can impose an operating specification on part of a Simscape model by inserting source blocks
from the Simscape Foundation Library. These impose specified values of system variables in parts of
the model. You can simulate and save the state vector.

However, you cannot obtain an operating point for the original system (without the source blocks) by
saving the state values from the model and then removing the source blocks. In general, the number,
order, and identity of state components change after adding and removing Simscape blocks in a
model.

Simulink trim Function Not Supported with Simscape Models

The Simulink trim function is not supported for models containing Simscape components.
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Linearizing at an Operating Point
In this section...
“What Is Linearization?” on page 9-5
“Linearizing a Physical Model” on page 9-6

What Is Linearization?
Determining the response of a system to small perturbations at an operating point is a critical step in
system and controller design. Once you find an operating point, you can linearize the model about
that operating point to explore the response and stability of the system. To find an operating point in
a Simscape model, see “Finding an Operating Point” on page 9-2.

• “What Is a Linearized Model?” on page 9-5
• “Example” on page 9-5
• “Choosing a Good Operating Point for Linearization” on page 9-6

What Is a Linearized Model?

Near an operating point, you can express the system state x, inputs u, and outputs y relative to that
operating point in terms of x – x0, u – u0, and y – y0. For convenience, shift the vectors by subtracting
the operating point: x – x0 → x, and so on.

If the system dynamics do not explicitly depend on time and the operating point is a steady state, the
system response to state and input perturbations near the steady state is approximately governed by
a linear time-invariant (LTI) state space model:

dx/dt = A·x + B·u

y = C·x + D·u.

The matrices A, B, C, D have components and structures that are independent of the simulation time.
A system is stable to changes in state at an operating point if the eigenvalues of A are negative.

If the operating point is not a steady state or the system dynamics depend explicitly on time, the
linearized dynamics near the operating point are more complicated. The matrices A, B, C, D are not
constant and depend on the simulation time t0 , as well as the operating point x0 and u0.

Tip While you can linearize a closed system with no inputs or outputs and obtain a nonzero A matrix,
obtaining a nontrivial linearized input-output model requires at least one input component in u and
one output component in y.

Example

A pilot is flying, or simulating, an aircraft in level, constant-velocity, and constant-altitude flight
relative to the ground. A crucial question for the aircraft pilot and designers is: will the aircraft
return to the steady state if perturbed from it by a disturbance, such as a wind gust — in other words,
is this steady state stable? If the operating point is unstable, the aircraft trajectory can diverge from
the steady state, requiring human or automatic intervention to maintain steady flight.
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Choosing a Good Operating Point for Linearization

Although steady-state and other operating points (state x0 and inputs u0) might exist for your model,
that is no guarantee that such operating points are suitable for linearization. The critical question is:
how good is the linearized approximation compared to the exact system dynamics?

• When perturbed slightly, a problematic operating point might exhibit strong asymmetries, with
strongly nonlinear behavior when perturbed in one direction and smoother behavior in another.

• Small perturbations might result in a discontinuous change in a state value, making the current
state unsuitable for linear approximation.

Operating points with a strongly nonlinear or discontinuous character are not suitable for
linearization. You should analyze such models in full simulation, away from any discontinuities, and
perturb the system by varying its inputs, parameters, and initial conditions. A common example is
actuation systems, which should be linearized away from any hard constraints or end stops.

Tip Check for such an unsuitable operating point by linearizing at several nearby operating points. If
the results differ greatly, the operating point is strongly nonlinear or discontinuous.

Linearizing a Physical Model
Use the following methods to create numerical linearized state-space models from a model containing
Simscape components.

Tip The Simulink Control Design product is recommended for linearization analysis.

• “Independent Versus Dependent States” on page 9-6
• “Linearizing with Simulink Control Design Software” on page 9-7
• “Linearizing with the Simulink linmod and dlinmod Functions” on page 9-7
• “Linearizing with Simulink Linearization Blocks” on page 9-8

Independent Versus Dependent States

An important difference from basic Simulink models is that the states in a physical network are not
independent in general, because some states have dependencies on other states through constraints.

• The independent states are a subset of system variables and consist of independent
(unconstrained) Simscape dynamic variables and other Simulink states.

• The dependent states consist of Simscape algebraic variables and dependent (constrained)
Simscape dynamic variables.

For more information on Simscape dynamic and algebraic variables, see “How Simscape Simulation
Works” on page 7-6.

The complete, unreduced LTI A, B, C, D matrices have the following structure.

• The A matrix, of size n_states by n_states, is all zeros except for a submatrix of size n_ind by
n_ind, where n_ind is the number of independent states.
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• The B matrix, of size n_states by n_inputs, is all zeros except for a submatrix of size n_ind by
n_inputs.

• The C matrix, of size n_outputs by n_states, is all zeros except for a submatrix of size
n_outputs by n_ind.

• The D matrix, of size n_outputs by n_inputs, can be nonzeros everywhere.

Obtaining the Independent Subset of States

A minimal linearized solution uses only an independent subset of system states. From the matrices A,
B, C, D, you can obtain a minimal input-output linearized model with:

• The minreal and sminreal functions from Control System Toolbox™ software
• Automatically with the Simulink Control Design approach

Linearizing with Simulink Control Design Software

Note The techniques described in this section require the Simulink Control Design product.

You must use the features of this product on the Simulink lines in your model, not directly on
Simscape physical network lines or blocks.

This approach requires that you start with an operating point object saved from trimming the model
to an operating specification.

To linearize a model with an operating point object, use the linearize function, customizing where
necessary. The resulting state-space object contains the matrices A, B, C, D.

You can also use the graphical user interface, through the Simulink Toolstrip: on the Apps tab, under
Control Systems, click Model Linearizer.

For more information on linearizing Simscape models using Simulink Control Design, see “Linearize
Simscape Networks” (Simulink Control Design).

Linearizing with the Simulink linmod and dlinmod Functions

You have several ways that you can use the Simulink functions linmod and dlinmod, and the
linearization results can differ depending on the method chosen. To use these functions, you do not
have to open the model, just have the model file on your MATLAB path.

For more information about Simulink linearization, see “Linearizing Models” (Simulink).

Tip If your model has continuous states, use linmod. (Continuous states are the Simscape default.)
If your model has mixed continuous and discrete states, or purely discrete states, use dlinmod.

Linearizing a model with the local solver enabled (in the Solver Configuration block) is not supported.

Linearizing with Default State and Input

You can call linmod without specifying state or input. Enter linmod('modelname') at the
command line.
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With this form of linmod, Simulink linearization solves for consistent initial conditions in the same
way it does on the first step of any simulation. Any initial conditions, such as initial offset from
equilibrium for a spring, are set as if the simulation were starting from the initial time.

linmod allows you to change the time of externally specified signals (but not the internal system
dynamics) from the default. For this and more details, see the linmod function reference page.
Linearizing with the Steady-State Solver at an Initial Steady State

You can linearize at an operating point found by the Simscape steady-state solver:

1 Open one or more Solver Configuration blocks in your model.
2 Select the Start simulation from steady state check box for the physical networks that you

want to linearize.
3 Close the Solver Configuration dialog boxes and save the modified model.
4 Enter linmod('modelname') at the command line.

linmod linearizes at the first step of simulation. In this case, the initial state is also an operating
point, a steady state.

For more about setting up the steady-state solver, see the Solver Configuration block reference page.
Linearizing with Specified State and Input — Ensuring Consistency of States

You can call linmod and specify state and input. Enter linmod('modelname',x0,u0) at the
command line. The extra arguments specify, respectively, the steady state x0 and inputs u0 for
linearizing the simulation. When you specify a state to linmod, ensure that it is self-consistent, within
solver tolerance.

With this form of linmod, Simulink linearization does not solve for initial conditions. Because not all
states in the model have to be independent, it is possible, though erroneous, to provide linmod with
an inconsistent state to linearize about.

If you specify a state that is not self-consistent (within solver tolerance), the Simscape solver issues a
warning at the command line when you attempt linearization. The Simscape solver then attempts to
make the specified x0 consistent by changing some of its components, possibly by large amounts.

Tip You most easily ensure a self-consistent state by taking the state from some simulated time. For
example, by selecting the States check box on the Data Import/Export pane of the model
Configuration Parameters dialog box, you can capture a time series of state values in a simulation
run.

Linearizing with Simulink Linearization Blocks

You can generate linearized state-space models from your Simscape model by adding a Timed-Based
Linearization or Trigger-Based Linearization block to the model and simulating. These blocks
combine time-based simulation, up to specified times or internal trigger points, with state-based
linearization at those times or trigger points.

For complete details about these blocks, see their respective block reference pages.

Note If your model contains PS Constant Delay or PS Variable Delay blocks, or custom blocks
utilizing the delay operator in the Simscape language, it is recommended that you linearize the
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model by using the Timed-Based Linearization or Trigger-Based Linearization block and simulating
the model for a time period longer than the specified delay time.
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Linearize an Electronic Circuit
This example shows how to linearize a model of a nonlinear bipolar transistor circuit and create a
Bode plot for small-signal frequency-domain analysis.

Depending on the software you have available, use the appropriate sections of this example to
explore various linearization and analysis techniques.

Explore the Model
To open the Nonlinear Bipolar Transistor example model, type ssc_bipolar_nonlinear in the
MATLAB Command Window.

The model represents a single-transistor audio amplifier. The transistor is an NPN bipolar device, and
as such has a nonlinear set of current-voltage characteristics. Therefore the overall behavior of the
amplifier is dependent on the operating point of the transistor. The transistor itself is represented by
and Ebers-Moll equivalent circuit implemented using a masked subsystem. The circuit has a
sinusoidal input test signal with amplitude 10 mV and frequency 1 kHz. The Load Voltage scope
displays the resulting collector output voltage after the DC is filtered out by the output decoupling
capacitor.

R1 and R2 set the nominal operating point, and the small signal gain is approximately set by the ratio
R3/R4. The decoupling capacitors C1 and C2 have a capacitance of 1uF, to present negligible
impedance at 1 kHz.

The model is configured for linearization. You can quickly generate and view the small-signal
frequency response by clicking the Linearize circuit hyperlink in model annotation. To view the
MATLAB script that generates the frequency response, click the next hyperlink in that annotation,
see code. This documentation provides background information and alternative ways of
linearization based on the software you have.

In general, to obtain a nontrivial linearized input-output model and generate a frequency response,
you must specify model-level inputs and outputs. The Nonlinear Bipolar Transistor model meets this
requirement in two ways, depending on how you linearize:
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• Simulink requires top- or model-level input and output ports for linearization with linmod. The
Nonlinear Bipolar Transistor model has such ports, marked u and y.

• Simulink Control Design software requires that you specify input and output signal lines with
linearization points. The specified lines must be Simulink signal lines, not Simscape physical
connection lines. The Nonlinear Bipolar Transistor model has such linearization points specified.
For more information on using Simulink Control Design software for trimming and linearization,
see documentation for that product.

Open the Solver Configuration block and see that the Start simulation from steady state check
box is selected. Then open the Load Voltage scope and run the simulation to see the basic circuit
behavior. The transistor junction capacitance initial voltages are set to be consistent with the bias
conditions defined by the resistors. The output is a steady sinusoid with zero average, its amplitude
amplified by the transistor and bias circuit.

To see the circuit relax from a nonsteady initial state, in the Solver Configuration block, clear the
Start simulation from steady state check box and click OK. With the Load Voltage scope open,
simulate again. In this case, the output voltage starts at zero because the transistor junction
capacitances start with zero charge.
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You can get a more comprehensive understanding of the circuit behavior and how it approaches the
steady state by long-time transient simulation. Increase the simulation time to 1 s and rerun the
simulation. The circuit starts from its initial nonsteady state, and the transistor collector voltage
approaches and eventually settles into steady sinusoidal oscillation.

Open the Solver Configuration block, select the Start simulation from steady state check box (as it
was when you first opened the model), and click OK. Change the simulation time back to .01 s and
rerun the simulation.
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Linearize with Steady-State Solver and linmod Function
In this example, you:

1 Use the Simscape steady-state solver to find an operating point
2 Linearize the model using the Simulink linmod function
3 Generate the Bode plot using a series of MATLAB commands

Open the Solver Configuration block and make sure the Start simulation from steady state check
box is selected. When you simulate the model with the Simscape steady-state solver enabled, the
circuit is initialized at the state defined by the transistor bias resistors. This steady-state solution is
an operating point suitable for linearization.

Note Also make sure that the Use local solver check box is cleared. Linearizing a model with the
local solver enabled is not supported.

To linearize the model, type the following in the MATLAB Command Window:

[a,b,c,d]=linmod('ssc_bipolar_nonlinear');

You can alternatively call the linmod function with a single output argument, in which case it
generates a structure with states, inputs, and outputs, as well as the linear time-invariant (LTI)
model.

The state vector of the Nonlinear Bipolar Transistor model contains 17 components. The full model
has one input and one output. Thus, the LTI state-space model derived from linearization has the
following matrix sizes:

• a is 17-by-17
• b is 17-by-1
• c is 1-by-17
• d is 1-by-1

To generate a Bode plot, type the following in the MATLAB Command Window:

npts = 100; f = logspace(-2,10,npts); G = zeros(1,npts);
for i=1:npts                                                       
    G(i) = c*(2*pi*1i*f(i)*eye(size(a))-a)^-1*b +d;                
end
subplot(211), semilogx(f,20*log10(abs(G)))                         
grid                                                               
ylabel('Magnitude (dB)')                                           
subplot(212), semilogx(f,180/pi*unwrap(angle(G)))                  
ylabel('Phase (degrees)')                                          
xlabel('Frequency (Hz)')                                           
grid  
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Linearize with Simulink Control Design Software

Note To work through this section, you must have a Simulink Control Design license.

Simulink Control Design software has tools that help you find operating points and returns a state-
space model object that defines state names. This is the recommended way to linearize Simscape
models.

1 In the Simulink Toolstrip of the Nonlinear Bipolar Transistor model window, on the Apps tab,
under Control Systems, click Model Linearizer.

2 In the Model Linearizer window, on the Linear Analysis tab, click the Bode plot button.

9 Linearization and Trimming

9-14



For more information on using Simulink Control Design software for trimming and linearization, see
the Simulink Control Design documentation.

Use Control System Toolbox Software for Bode Analysis

Note To work through this section, you must have a Control System Toolbox license.

You can use the built-in analysis and plotting capabilities of Control System Toolbox software to
analyze and compare Bode plots of different steady states.

First, use the Simulink linmod function to obtain the linear time-invariant (LTI) model.

[a,b,c,d]=linmod('ssc_bipolar_nonlinear');

Not all the states of the LTI model derived in this example are independent. Confirm this by
calculating the determinant of the a matrix, det(a). The determinant vanishes, which implies one or
more zero eigenvalues. To analyze the LTI model, reduce the LTI matrices to a minimal realization.
Obtain a minimal realization using the minreal function.

[a0,b0,c0,d0] = minreal(a,b,c,d);

13 states removed.

Extracting the minimal realization eliminates 13 dependent states from the LTI model, leaving four
independent states. Analyze the control characteristics of the reduced a0, b0, c0, d0 LTI model using
a Bode plot.

bode(a0,b0,c0,d0) % Creates first Bode plot
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The circuit with R1 changed from 47 to 15 kOhm has a different steady state and response. Double-
click the R1 block, change the Resistance value to 15 kOhm, and click OK. Open the Load Voltage
scope and simulate the model. The collector voltage is now no longer amplified relative to the 10 mV
AC source but attenuated.

Produce the LTI model at the second steady state, reduce it to a minimal realization, and superpose
the second Bode plot on the first one.
[a_R1,b_R1,c_R1,d_R1]=linmod('ssc_bipolar_nonlinear');
[a0_R1,b0_R1,c0_R1,d0_R1] = minreal(a_R1,b_R1,c_R1,d_R1); % 13 states removed.
hold on % Keeps first Bode plot open
bode(a0_R1,b0_R1,c0_R1,d0_R1) % Superposes second Bode plot on first

9 Linearization and Trimming

9-16



For more information on using Control System Toolbox software for Bode analysis, see the Control
System Toolbox documentation.

See Also

Related Examples
• “Linearize a Plant Model for Use in Feedback Control Design” on page 9-18

More About
• “Finding Operating Points in Physical Models” on page 9-2
• “Linearizing a Physical Model” on page 9-6
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Linearize a Plant Model for Use in Feedback Control Design
This example shows how you can linearize a hydraulic plant model to support control system stability
analysis and design.

Depending on the software you have available, use the appropriate sections of this example to
explore various linearization and analysis techniques.

Explore the Model
To open the Hydraulic Actuator with Digital Position Controller example model, type
ssc_hydraulic_actuator_digital_control in the MATLAB Command Window.

The model represents a two-way valve acting in a closed-loop circuit together with a double-acting
cylinder. Double-click the Hydraulic Actuator subsystem to see the model configuration.

The controller is represented as a continuous-time transfer function plus a transport delay that allows
for computational time and a zero-order hold when implemented in discrete time. The Linearization
I/O points subsystem lets you easily break and restore the feedback control loop by setting the base
workspace variable ClosedLoop to 0 or 1, respectively.
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You can quickly generate and view the small-signal frequency response by clicking the Linearize
hyperlink in model annotation. To view the MATLAB script that generates the frequency response,
click the next hyperlink in that annotation, see code. This documentation provides background
information and alternative ways of linearization based on the software you have.

In general, to obtain a nontrivial linearized input-output model and generate a frequency response,
you must specify model-level inputs and outputs. The Hydraulic Actuator with Digital Position
Controller model meets this requirement in two ways, depending on how you linearize:

• Simulink requires top- or model-level input and output ports for linearization with linmod. The
model has such ports, marked In1 and Out1.

• Simulink Control Design software requires that you specify input and output signal lines with
linearization points. The specified lines must be Simulink signal lines, not Simscape physical
connection lines. The model has such linearization points specified. For more information on using
Simulink Control Design software for trimming and linearization, see documentation for that
product.

Open the Load Position scope and simulate the model in a normal closed-loop controller
configuration.

You can see that the model has a quasi-linear steady-state response between 2 and 3 seconds, when
the two-way valve is open. Therefore, the state at 2.5 seconds is an operating point suitable for
linearization.
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Trim Using the Controller and Linearize with Simulink linmod Function
1 Set the controller parameters.

To specify sample time for controller discrete-time implementation, type the following in the
MATLAB Command Window:

ts = 0.001;

To specify continuous-time controller numerator and denominator, type:

num = -0.5;
den = [1e-3 1];

2 Find an operating point by running closed-loop and selecting the state at 2.5 seconds when the
custom two-way valve is open.

To close the feedback loop, type:

assignin('base','ClosedLoop',1);

To simulate the model and save the operating point information in the form of a state vector X
and input vector U, type:

[t,x,y] = sim('ssc_hydraulic_actuator_digital_control');
idx = find(t>2.5,1);
X = x(idx,:); U = y(idx);

3 Linearize the model using the Simulink linmod function.

To break the feedback loop, type:

assignin('base','ClosedLoop',0);

To linearize the model, type:

[a,b,c,d] = linmod('ssc_hydraulic_actuator_digital_control',X,U);

Close the feedback loop by typing:

assignin('base','ClosedLoop',1);
4 To generate a Bode plot with negative feedback convention, type the following in the MATLAB

Command Window:

c = -c; d = -d;
npts = 100; w = logspace(-3,5,npts); G = zeros(1,npts);
for i = 1:npts                                                     
    G(i) = c*(1i*w(i)*eye(size(a))-a)^-1*b +d;                     
end
subplot(211), semilogx(w,20*log10(abs(G)))                         
grid                                                               
ylabel('Magnitude (dB)')                                           
subplot(212), semilogx(w,180/pi*unwrap(angle(G)))                  
ylabel('Phase (degrees)')                                          
xlabel('Frequency (rad/s)')                                        
grid 
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Linearize with Simulink Control Design Software

Note To work through this section, you must have a Simulink Control Design license.

Simulink Control Design software has tools that help you find operating points and returns a state-
space model object that defines state names. This is the recommended way to linearize Simscape
models.

1 In the Simulink Toolstrip of the Hydraulic Actuator with Digital Position Controller model
window, on the Apps tab, under Control Systems, click Model Linearizer.

2 In the Model Linearizer window, on the Linear Analysis tab, in the Operating Point drop-down
list, select Linearize At. Enter simulation snapshot time of 2.5 seconds and click OK.

3 Click the Bode plot button.
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For more information on using Simulink Control Design software for trimming and linearization, see
the Simulink Control Design documentation.

See Also

Related Examples
• “Linearize an Electronic Circuit” on page 9-10

More About
• “Finding Operating Points in Physical Models” on page 9-2
• “Linearizing a Physical Model” on page 9-6
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Simscape Run-Time Parameters

• “About Simscape Run-Time Parameters” on page 10-2
• “Show Simscape Run-Time Parameter Settings” on page 10-4
• “Manage Simscape Run-Time Parameters” on page 10-5
• “Specify and Change a Simscape Run-Time Parameter” on page 10-7
• “Troubleshoot Simscape Run-Time Parameter Issues” on page 10-10
• “How Simscape Run-Time Parameters and Simulink Tunable Parameters Differ” on page 10-11
• “Improve Parameter-Sweeping Efficiency Using Simscape Run-Time Parameters” on page 10-13
• “Decrease Computational Cost by Inlining Simscape Run-Time Parameters” on page 10-15

10



About Simscape Run-Time Parameters
Simscape run-time parameters are MATLAB variables or Simulink.Parameter objects that are run-
time configurable. By default, run-time configurable parameters are noninlined during code
generation. As such, they are coded not as constants, but as variables with values that you can
change before or between simulations without recompiling the model.

Simscape run-time parameters help you work more efficiently than compile-time configurable
parameters because they allow you to forgo model recompiling when you change parameter values:

• Between fast-restart, iterative simulations on a development computer
• In referenced models on a development computer
• In the generated code in a Rapid Accelerator (Rsim) mode or on real-time target hardware

For more information on using Simscape run-time parameters for these types of simulation, see
“Improve Parameter-Sweeping Efficiency Using Simscape Run-Time Parameters” on page 10-13.

By default, all Simscape block parameters are compile-time configurable parameters. You cannot
change the value of a compile-time configurable parameter in the model or in generated code without
recompiling the model. Therefore, you can change the value of compile-time parameters only in the
plant model on your development computer.

Simscape supports run-time configurability for some, but not all, dialog box parameters. To determine
if you can specify a particular parameter as a Simscape run-time parameter, examine the block dialog
box run-time setting for the parameter. If an enabled run-time setting appears next to the parameter
on the block dialog box, you can specify the parameter as run-time configurable. If there is no run-
time setting, or if the setting is not enabled, then the parameter is strictly compile-time configurable.
You cannot specify a strictly compile-time configurable parameter as a Simscape run-time parameter.

Tip To view the Run-time option, set your Simscape preferences to show runtime settings. For more
information, see “Show Simscape Run-Time Parameter Settings” on page 10-4.

To specify a Simscape block parameter as run-time configurable, change the run-time configuration
setting, which appears next to the dialog box for the parameter, from Compile-time to Run-time.
The figure shows a run-time configuration setting for the Constant voltage parameter of a Simscape
voltage supply block. The specified value for the parameter is the variable V1. V1 is saved to MATLAB
workspace so that you can tune it between simulation runs.

For an example that shows how to specify and change Simscape run-time parameters on development
and target computers, see “Specify and Change a Simscape Run-Time Parameter” on page 10-7
and “Change Parameter Values on Target Hardware” on page 11-126.

While Simscape run-time parameters can make iterative simulation more efficient, using them can
decrease the efficiency of code that you generate. Code that contains compile-time or inlined run-time
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parameters is more computationally efficient because it does not have to store or retrieve parameter
values. If you set the default parameter behavior for code generation to inlined, the generated code
algorithm inlines the numeric values of all block parameters as constants.

For information that can help you decide when to inline Simscape run-time parameters, see
“Decrease Computational Cost by Inlining Simscape Run-Time Parameters” on page 10-15. To learn
how to inline Simscape run-time parameters, see “Manage Simscape Run-Time Parameters” on page
10-5.

Simscape run-time parameters are similar to, but different from Simulink tunable parameters. For
example, you can forgo recompiling when you change the value of a tunable parameter while a
simulation is either running or stopped. You can change the value of a run-time configurable
parameter, without having to recompile the model, only if you do so while the simulation is stopped.
For more information on differences between the two types of parameters, see “How Simscape Run-
Time Parameters and Simulink Tunable Parameters Differ” on page 10-11.

Run-Time Configurability for Block-Level Variable Initialization Target
Values
Some Simscape blocks have Variables settings that allow you to set a target value for block-level
variable initialization. For more information, see “Initializing Block Variables for Model Simulation”
on page 8-2 and “Set Priority and Initial Target for Block Variables” on page 8-4.

The variables included in Variables settings are run-time configurable by default. You can tune a
block-level variable-initialization target value between simulation runs if you specify the target value
using a variable that you save to the MATLAB workspace.

See Also

More About
• “Show Simscape Run-Time Parameter Settings” on page 10-4
• “Specify and Change a Simscape Run-Time Parameter” on page 10-7
• “Change Parameter Values on Target Hardware” on page 11-126
• “Manage Simscape Run-Time Parameters” on page 10-5
• “Troubleshoot Simscape Run-Time Parameter Issues” on page 10-10
• “Improve Parameter-Sweeping Efficiency Using Simscape Run-Time Parameters” on page 10-

13
• “Decrease Computational Cost by Inlining Simscape Run-Time Parameters” on page 10-15
• “How Simscape Run-Time Parameters and Simulink Tunable Parameters Differ” on page 10-11
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Show Simscape Run-Time Parameter Settings
You use block dialog box parameter settings to specify Simscape run-time parameters. However,
Simscape block dialog box parameter settings do not show run-time settings unless you set the
MATLAB preference to do so. To display run-time parameter settings for run-time configurable
Simscape parameters by default:

1 Open the Preferences dialog box. On the MATLAB Home tab, in the Environment section, click
Preferences.

2 In the left pane of the dialog box, select Simscape.
3 Select the Show run-time parameter settings check box.

Preferences take effect and remain persistent across MATLAB sessions.

See Also

More About
• “About Simscape Run-Time Parameters” on page 10-2
• “Specify and Change a Simscape Run-Time Parameter” on page 10-7
• “Manage Simscape Run-Time Parameters” on page 10-5
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Manage Simscape Run-Time Parameters
By default, all Simscape parameters are compile-time configurable parameters. If you change the
value of a compile-time parameter, recompile before simulating the modified model. If you want to
change the value without recompiling between iterative simulations or in generated code, you must
specify a Simscape dialog box parameter as a run-time configurable parameter.

Show Simscape Run-Time Parameter Settings
You use block dialog box parameter settings to configure Simscape run-time parameters. However,
Simscape block dialog box parameter settings do not show run-time parameter settings unless you
set the default behavior to do so in MATLAB preferences. To learn how to set the default behavior to
show run-time settings for supported Simscape parameters, see “Show Simscape Run-Time
Parameter Settings” on page 10-4.

Specify Simscape Run-Time Parameters
Some Simscape block parameters are strictly compile-time configurable parameters. You cannot
specify strictly compile-time configurable parameters as run-time configurable parameters. To
determine if a particular Simscape parameter is supported for run-time configurability, examine the
block dialog box settings for the parameter. If an enabled run-time setting appears next to the
parameter on the block dialog box, you can specify the parameter as run-time configurable. To do
specify Run-time for the setting. You can change the run-time setting on the dialog box from
Compile-time to Run-time at any time before you generate code from your Simscape model.

The figure shows an enabled run-time setting for the Constant voltage parameter of a Simscape
block. If there is no run-time setting for a parameter, or if the setting is disabled, then the parameter
is strictly compile-time configurable.

Simscape run-time parameters are changeable by variable, not by field. That is, to simulate without
recompiling after a parameter change, you cannot simply update the value of the parameter in the
dialog box setting where you specify the numeric value. You change the value of the variable that
represents the parameter in the workspace or in the generated code. To do so, you first:

1 Specify the parameter as a variable in the dialog box setting.
2 Set a value for the variable and save the variable to the MATLAB workspace.

For an example that shows how to specify a Simscape run-time parameter using a variable, see
“Specify and Change a Simscape Run-Time Parameter” on page 10-7.

Set the Default Parameter Behavior for Generated Code
By default, you can change the value of a Simscape run-time parameter while the simulation is
stopped without having to recompile the model. If you change the default parameter behavior for

 Manage Simscape Run-Time Parameters

10-5



code generation to inlined, the generated code algorithm inlines the numeric values of all the block
parameters as constants. The code that you generate using inlined parameters is more
computationally efficient because it does not have to store or retrieve parameter values.

To set the default behavior for Simscape run-time parameters:

1 Open the model Configuration Parameters. On the Modeling tab, click Model Settings >
Model Settings.

2 In the model Configuration Parameters, in the left pane, selectCode Generation >
Optimization.

3 Select a value for the Default parameter behavior parameter:

• Tunable — Simulink Coder generates data structures that you can modify to change
parameters without recompiling between simulation runs.

• Inline — The Simulink Coder algorithm hard-codes the numeric values of all the block
parameters as constants in the generated C code, rendering them non-modifiable.

Selectively Override the Inline Default Behavior
While computational cost increases if you specify Simscape parameters in your model as run-time
configurable, the cost increase is not proportional to the number of parameters that you so specify. If
you declare a single parameter as run-time configurable, the computational cost increases sharply.
The cost increases less per parameter for any additional Simscape run-time parameters that you
specify. Therefore, even if the computational cost for your model decreases greatly with inlining, it
decreases only slightly for each Simscape run-time parameter that you selectively inline. However if
your model is at risk of overrunning and it contains Simscape run-time parameters, you might
decrease the computational cost enough to prevent overruns by selectively excluding only a few
Simscape run-time parameters from inlining.

To inline with exceptions:

1 In the Code Generation > Optimization settings, set the Default parameter behavior to
Inline.

2 To open the Model Parameter Configuration settings, click Configure.
3 In the Model Parameter Configuration settings, remove individual parameters from inlining.

See Also

More About
• “Model Configuration Parameters: Code Generation Optimization” (Simulink Coder)
• “Model Callbacks” (Simulink)
• “About Simscape Run-Time Parameters” on page 10-2
• “Show Simscape Run-Time Parameter Settings” on page 10-4
• “Specify and Change a Simscape Run-Time Parameter” on page 10-7
• “Change Parameter Values on Target Hardware” on page 11-126
• “Decrease Computational Cost by Inlining Simscape Run-Time Parameters” on page 10-15
• “How Simscape Run-Time Parameters and Simulink Tunable Parameters Differ” on page 10-11
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Specify and Change a Simscape Run-Time Parameter

Prerequisites
Show Simscape Run-Time Parameter Settings

You use block dialog box parameter settings to specify Simscape run-time parameters. However,
Simscape block dialog box parameter settings do not show run-time settings unless you set the
default behavior to do so using MATLAB preferences. For an example that shows you how to set the
default behavior to show run-time parameter settings for run-time configurable Simscape
parameters, see “Show Simscape Run-Time Parameter Settings” on page 10-4.

Set the Default Parameter Behavior for Code Generation

Simscape run-time parameters depend on the default parameter behavior setting for code generation.
To enable run-time configurability for a Simscape run-time parameter so that you can change its
value without recompiling your model, you can:

• Set the default to tunable
• Set the default inline, and override the default behavior for the parameter with the value that

you want to change.

For information on setting and overriding the default behavior for Simscape run-time parameters, see
“Manage Simscape Run-Time Parameters” on page 10-5.

Specify a Parameter as Run-Time Configurable
The PM DC Motor example model contains a DC Voltage block. You parameterize the block by
specifying the Constant voltage for the source. The voltage is supported as a Simscape run-time
parameter. To specify Constant voltage as a run-time configurable parameter:

1 To open model, at the MATLAB command prompt, enter:

ssc_dcmotor
2 From the model window, access the parameter settings for the DC Voltage block.
3 To specify Constant voltage as a Simscape run-time parameter, for the run-time setting, select

Run-time.
4 Specify the Constant voltage parameter value as the variable vDC.
5 Assign a numeric the value to the variable in the MATLAB workspace:

vDC = 5;

Change a Simscape Run-Time Parameter Using Fast Restart
To see how altering the value of a run-time configurable parameter can affect simulation results,
change the value of the Constant voltage parameter between iterative fast-start simulations.

1
To enable fast restart, click the Fast restart icon  on the Simulink Editor toolbar.
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2 To simulate the model, click the Run button on the Simulink Editor toolbar.
3 Open the Motor RPM scope block. Autoscale to see the results better.

4 Assign a different value to the variable that represents voltage:

vDC = 1.5;
5 Simulate the model.
6 Open the Motor RPM scope block.

The results reflect the change in value for the run-time parameter.
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See Also

More About
• “About Simscape Run-Time Parameters” on page 10-2
• “Manage Simscape Run-Time Parameters” on page 10-5
• “Change Parameter Values on Target Hardware” on page 11-126
• “Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using RSim System

Target File” (Simulink Coder)
• “How Acceleration Modes Work” (Simulink)
• “Get Started with Fast Restart” (Simulink)
• “How Simscape Run-Time Parameters and Simulink Tunable Parameters Differ” on page 10-11
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Troubleshoot Simscape Run-Time Parameter Issues

Simscape Run-Time Parameter Setting Not Visible
If a Simscape parameter is potentially run-time configurable, a configuration setting appears on the
tab that contains the settings for the parameter. If the setting is enabled, you can use it to specify the
parameter as either a run-time or compile-time configurable parameter. If the configuration setting is
not visible, then either the parameter is strictly compile-time configurable or the Simscape option for
showing run-time parameter settings is not enabled. To see how to enable the option, see “Show
Simscape Run-Time Parameter Settings” on page 10-4.

Simulation Does Not Respond to Simscape Run-Time Parameter
Change
If you use an expression to define a variable for a Simscape run-time parameter, you might not be
able to change the parameter without model recompilation. When an unsupported expression is
encountered during code generation, a warning is issued and the equivalent numeric value is
generated in the code. For information on the limitations for using expressions for run-time
configurable parameters, see “Tunable Expression Limitations” (Simulink Coder).

If you change the value of a Simscape run-time parameter during a simulation, the results do not
reflect the value change. For a run-time configurable parameter change to take effect, you make the
change when the simulation is stopped. To see how to change the value of a Simscape run-time
parameter, see “Specify and Change a Simscape Run-Time Parameter” on page 10-7 and “Change
Parameter Values on Target Hardware” on page 11-126.

See Also

More About
• “About Simscape Run-Time Parameters” on page 10-2
• “Show Simscape Run-Time Parameter Settings” on page 10-4
• “Manage Simscape Run-Time Parameters” on page 10-5
• “Specify and Change a Simscape Run-Time Parameter” on page 10-7
• “Change Parameter Values on Target Hardware” on page 11-126
• “How Simscape Run-Time Parameters and Simulink Tunable Parameters Differ” on page 10-11
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How Simscape Run-Time Parameters and Simulink Tunable
Parameters Differ

Simscape run-time parameters and Simulink tunable parameters both allow you to change the values
of parameters on your development or target computer without model recompilation. However, they
differ in these important ways:

• You can change the value of a Simulink tunable parameter while a simulation is running. Simscape
run-time parameters are run-time configurable. You cannot change the value of a run-time
configurable parameter during simulation. You can only change the value of a run-time
configurable parameter when a simulation is stopped.

• Simulink tunable parameters are tunable by default. Simscape block parameters are compile-time
configurable by default. To make a Simscape block parameter run-time configurable, you specify it
as such.

• Simulink tunable parameters are tunable-by-field. You can change a tunable parameter simply by
changing the numeric value using the block dialog box parameter setting. Simscape run-time
parameters are tunable-by-variable. To change the value of a Simscape run-time parameter, you:

1 Specify a variable for the parameter in the block dialog box setting.
2 Use input tools, such as the command prompt, callbacks, scripts, or MAT-files, to assign a

value for the variable in the MATLAB workspace.
3 Use input tools to change the value for the variable.

• For code generation, you specify the Default parameter behavior as Tunable or Inlined. You
cannot modify inlined parameters in generated code because the compiler specifies them as
constants. You can change the values of tunable parameters in generated code because the
compiler specifies them as modifiable global variables or structure fields.

If you set the default behavior to Tunable, the compiler specifies all Simscape run-time
parameters and Simulink tunable parameters as modifiable entities in the generated code.
However, if you set the default behavior to Inlined, the compiler inlines only the Simscape run-
time parameters. The Simulink tunable parameters are still generated as modifiable entities in the
code. To change the value of a particular Simscape run-time parameter in the generated code
when the default behavior is inlined, you declare that parameter as an exception to inlining.

The table shows the state, mode, and code section in which you can change a run-time parameter or
run-time configurable parameter.

Machine Simulink
Simulation Mode

Simulation Status Section of
Generated
Code That
You Modify

Simscape
Run-Time
Parameter
Is
Modifiable

Simulink
Tunable
Parameter
Is
Modifiable

Development Normal SimulationStatus is
stopped

Not
Applicable

(NA)

Yes Yes

Development Normal SimulationStatus is
running

NA No Yes
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Machine Simulink
Simulation Mode

Simulation Status Section of
Generated
Code That
You Modify

Simscape
Run-Time
Parameter
Is
Modifiable

Simulink
Tunable
Parameter
Is
Modifiable

Development
or Target

Normal,
Accelerator, Rapid
Accelerator, SIL,
PIL, or External

SimulationStatus is
stopped

NA Yes Yes

Development
or Target

Normal,
Accelerator, Rapid
Accelerator, SIL,
PIL, or External

SimulationStatus is
running

NA No Yes

Target Normal, SIL, PIL, or
External

SimulationStatus is
stopped

Setup-
function

Yes Yes

Target Normal, SIL, PIL, or
External

SimulationStatus is
running

• Step-
function

for a
Simulink

global
variable

• External
code for a
Simulink
paramete
r object

No Yes

Between normal mode simulations, as long as your changes do not affect the structure of the model,
you can forgo recompiling by using fast restart when you change Simscape run-time and Simulink
tunable parameters.

See Also

More About
• “Change Parameter Values on Target Hardware” on page 11-126
• “Tune and Experiment with Block Parameter Values” (Simulink)
• “Specify and Change a Simscape Run-Time Parameter” on page 10-7
• “Code Regeneration in Accelerated Models” (Simulink)
• “About Simscape Run-Time Parameters” on page 10-2
• “Manage Simscape Run-Time Parameters” on page 10-5
• “Decrease Computational Cost by Inlining Simscape Run-Time Parameters” on page 10-15
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Improve Parameter-Sweeping Efficiency Using Simscape Run-
Time Parameters

Simscape run-time parameters are run-time configurable. They allow you to forgo recompiling if you
change parameter values between iterative simulations during parameter surveys. You can only test a
single value for a compile-time configurable parameter without recompiling your model.

You can benefit from this advantage when you perform parameter sweeps using fast restart, model
referencing, or code generation. Code generation allows you to update Simscape run-time
parameters between simulation runs using:

• Rapid Simulation (Rsim) on development or target hardware
• Real-time simulation on target hardware

Model Referencing with Run-Time Configurable Parameters
You can use Simulink Model blocks to represent one model within another. Each instance of a Model
block represents a reference to another model, called a referenced model. For simulation and code
generation, the referenced model effectively replaces the Model block that references it. To change
the behavior of a referenced model without recompiling, specify a Simscape run-time parameter
value in the referenced model using either global parameters or model arguments.

For information on using and parameterizing referenced models, see “Model Reference Basics”
(Simulink) and “Parameterize Instances of a Reusable Referenced Model” (Simulink).

Code Generation with Run-Time Configurable Parameters
Simscape run-time parameters are run-time configurable. They allow you to test your design over a
range of values for plant parameters without recompiling or redeploying code. You can:

• Change the value of a Simscape run-time parameter in both your plant model and in your
generated code on your development computer for a rapid or real-time simulation.

• Update a run-time configurable parameter in your deployed code before you run your simulation
as an executable on an external target machine.

For an example that uses Simscape run-time parameters for real-time simulation see “Change
Parameter Values on Target Hardware” on page 11-126.

Note The Rapid Accelerator (Rsim) mode uses portions of the Simulink Coder product to create an
executable. These modes replace the interpreted code normally used in Simulink simulations,
shortening model run time. Although Rsim uses Simulink Coder code generation technology, you do
not need Simulink Coder software on your development computer to accelerate your model with
Rsim.

Fast Restart with Simscape Run-Time Parameters
Changing parameter values does not require model recompiling between simulation runs unless the
changes alter the model structurally. However, when you use normal mode simulation without fast
restart, each simulation compiles the model. The compiling occurs even if the new values do not
change the structure of the model and each recompile increases the overall simulation time.
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With Simulink fast restart, you can modify Simscape run-time parameters from the workspace
variable, without recompiling. For an example that shows how to specify a Simscape run-time
parameter and change the parameter value using fast restart, see “Specify and Change a Simscape
Run-Time Parameter” on page 10-7.

See Also

More About
• “About Simscape Run-Time Parameters” on page 10-2
• “Manage Simscape Run-Time Parameters” on page 10-5
• “Change Parameter Values on Target Hardware” on page 11-126
• “Get Started with Fast Restart” (Simulink)
• “Decrease Computational Cost by Inlining Simscape Run-Time Parameters” on page 10-15
• “Model Reference Basics” (Simulink)
• “How Fast Restart Improves Iterative Simulations” (Simulink)
• “Choosing a Simulation Mode” (Simulink)
• “Code Regeneration in Accelerated Models” (Simulink)
• “Accelerate, Refine, and Test Hybrid Dynamic System on Host Computer by Using RSim System

Target File” (Simulink Coder)
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Decrease Computational Cost by Inlining Simscape Run-Time
Parameters

Simscape run-time parameters tend to increase the complexity of your code and, therefore, the
computational cost of simulating your model. While the additional cost is not typically problematic for
desktop simulation, it could result in a CPU overload during real-time simulation.

Consider decreasing the complexity of your model by inlining Simscape run-time parameters in your
model, if your simulation:

• Generates small steps during model preparation. For information, see “Real-Time Model
Preparation Workflow” on page 11-4.

• Has a long execution time when you are configuring your model for real-time simulation. For
information, see “Real-Time Simulation Workflow” on page 11-72.

• Overruns during real-time simulation on target hardware.

For information on inlining Simscape run-time parameters, see “Manage Simscape Run-Time
Parameters” on page 10-5.

See Also

More About
• “Estimate Computation Costs” on page 11-87
• “Reduce Computation Costs” on page 11-25
• “Fixed-Cost Simulation for Real-Time Viability” on page 11-71
• “Improving Speed and Accuracy” on page 11-8
• “About Simscape Run-Time Parameters” on page 10-2
• “Manage Simscape Run-Time Parameters” on page 10-5
• “Change Parameter Values on Target Hardware” on page 11-126
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Real-Time Simulation

• “Model Preparation Objectives” on page 11-2
• “Real-Time Model Preparation Workflow” on page 11-4
• “Improving Speed and Accuracy” on page 11-8
• “Determine Step Size” on page 11-12
• “Increase Simulation Speed Using the Partitioning Solver” on page 11-19
• “Reduce Computation Costs” on page 11-25
• “Reduce Fast Dynamics” on page 11-29
• “Reduce Numerical Stiffness” on page 11-47
• “Reduce Zero Crossings” on page 11-55
• “Partition a Model” on page 11-64
• “Manage Model Variants” on page 11-70
• “Fixed-Cost Simulation for Real-Time Viability” on page 11-71
• “Real-Time Simulation Workflow” on page 11-72
• “Solvers for Real-Time Simulation” on page 11-76
• “Troubleshooting Real-Time Simulation Issues” on page 11-80
• “Determine System Stiffness” on page 11-82
• “Estimate Computation Costs” on page 11-87
• “Choose Step Size and Number of Iterations” on page 11-89
• “What Is Hardware-In-The-Loop Simulation?” on page 11-103
• “Hardware-In-The-Loop Simulation Workflow” on page 11-106
• “Code Generation Requirements” on page 11-111
• “Software and Hardware Configuration” on page 11-113
• “Signal and Parameter Visualization and Control” on page 11-114
• “Troubleshoot Hardware-in-the-Loop Simulation Issues” on page 11-116
• “Generate, Download, and Execute Code” on page 11-117
• “Check for Target Hardware Overruns” on page 11-119
• “Change Parameter Values on Target Hardware” on page 11-126
• “Requirements for Using Alternative Platforms” on page 11-133
• “Extending Embedded and Generic Real-Time System Target Files” on page 11-135
• “Precompiled Static Libraries” on page 11-136
• “Initialization Cost” on page 11-137
• “Generate HDL Code Using the Simscape HDL Workflow Advisor” on page 11-138
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Model Preparation Objectives
In this section...
“Obtain Reference Results” on page 11-2
“Determine Step Size” on page 11-2
“Adjust Model Fidelity or Scope” on page 11-2

The main goal of model preparation is to ensure that your model is real-time capable. Your model is
real-time capable if it is both:

• Accurate enough to generate simulation results that match your expectations, as based on
theoretical models and empirical data

• Fast enough to run on your real-time target machine without overruns

During model preparation, you obtain reference results and determine step size to assess the
likelihood that your model is real-time capable. If it is unlikely that your model is real-time capable,
you adjust the model scope or fidelity to make real-time simulation with your model feasible.

Obtain Reference Results
Moving your model from desktop simulation to real-time simulation is an iterative process that can
require extensive model reconfiguration. During model preparation, you obtain reference results from
a variable-step simulation of your original model. These results provide a baseline against which you
can judge the accuracy of your modified models.

Determine Step Size
In terms of speed, the only way to know if your model is real-time capable is to test for overruns while
simulating on real-time hardware. You can, however, analyze solver execution speed using desktop
simulation to determine if your model is probably fast enough for real-time simulation. You do so by
analyzing the steps of a variable-step solver to find the maximum step size to use for sufficiently
accurate real-time simulation results. If the required step size appears small enough to cause an
overrun on your real-time hardware, you increase the step size by improving simulation speed.

Adjust Model Fidelity or Scope
You can adjust the fidelity or scope of your model to increase speed or accuracy. Adjustments include:

• Deleting or adding blocks or modifying block parameters to eliminate or reduce the effects of
elements that introduce numerical stiffness or cause discontinuities. Simulations take small steps
to calculate accurate solutions for these types of elements.

• Modifying elements or parameters to increase simulation efficiency. For example, simplify
graphics that require excessive processing power or including lookup tables instead of utilizing
processing power to calculate known values.

• Partitioning independent networks of the model to enable parallel processing.

You can also adjust solver settings to help to make your model real-time capable. For real-time
simulation on target hardware, you use a fixed-step, fixed-cost solver that bounds the computation
cost, that is, the time the solver takes to execute each time step. You configure the solver parameters
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before deploying it to a real-time target machine. The fixed-step solver settings that you adjust to
improve the real-time viability of your model include step size, solver type, and number of iterations.

Due to the number of options, it is challenging to find the right combination of model size, model
fidelity, and solver parameters to achieve real-time simulation. The relationship between speed and
accuracy also makes it hard to find both system and solver configurations that help to make your
model real-time capable. If you increase speed, you are likely to decrease accuracy. Conversely,
increasing accuracy tends to decrease speed. It is especially difficult to achieve acceptable speed and
accuracy if you try to adjust model fidelity and scope while you are changing fixed-step solver
settings. A better approach to find the optimal configuration is to change only one or two related
settings, analyze how those changes affect simulation speed and accuracy, and then make other
adjustments.

The real-time model preparation and the real-time simulation workflows separate the configuration
changes into two different step-wise processes. For the real-time model preparation workflow, you
adjust only the size or fidelity of your model and use variable-step simulation to analyze the effects of
your changes. For the real-time simulation workflow, you adjust only the solver parameters and you
use fixed-step, fixed-cost simulation to analyze how the changes affect the speed and accuracy of your
model.

See Also

Related Examples
• “Determine Step Size” on page 11-12
• “Estimate Computation Costs” on page 11-87
• “Reduce Computation Costs” on page 11-25
• “Reduce Fast Dynamics” on page 11-29
• “Reduce Numerical Stiffness” on page 11-47
• “Reduce Zero Crossings” on page 11-55
• “Partition a Model” on page 11-64
• “Manage Model Variants” on page 11-70

More About
• “Improving Speed and Accuracy” on page 11-8
• “Fixed-Cost Simulation for Real-Time Viability” on page 11-71
• “Real-Time Model Preparation Workflow” on page 11-4
• “Real-Time Simulation Workflow” on page 11-72
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Real-Time Model Preparation Workflow
In this section...
“Prepare Your Model for Real-Time Simulation” on page 11-5
“Insufficient Computational Capability for Workflow Completion” on page 11-6

The figure shows the real-time model preparation workflow.

A real-time-capable model is both fast and accurate. When you simulate a real-time-capable model on
your real-time target machine, it runs to completion and generates results that match your
expectations, as based on theoretical models and empirical data. The only way to determine if your
model is real-time capable is to run it on your real-time target machine. You can, however, use
desktop simulation, that is, simulation on your development computer, to determine the likelihood
that your model is real-time capable before you deploy it.

The real-time model preparation workflow is the first of two workflows that you perform on your
development computer to make it more probable that your model is real-time capable. The workflow
shows you how to adjust the size or fidelity of your model to improve speed without sacrificing and
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accuracy. When you finish this workflow, use the real-time simulation workflow to find the best fixed-
step, fixed-cost solver configuration to use for simulating your model in real time.

Prepare Your Model for Real-Time Simulation
Obtain Reference Results

Use empirical or theoretical data to design and build your Simscape model. Use a Simulink global
variable-step solver to simulate your model. Refine your model as needed to obtain simulation results
that the underlying data supports. Reference results provide a baseline to assess model accuracy
against throughout all stages of the model preparation and real-time simulation workflows.

Evaluate Overrun Risk

An overrun occurs when the step size is too small to allow the real-time computer to complete all the
processing required for any one step. If your model requires a step size that is so small that it is likely
to cause an overrun, then your model is not fast enough for real-time simulation. To determine if
small steps are likely to cause an overrun, create a plot of the size of the steps that the variable-step
step solver uses to execute the simulation of your model. The step size plot tells you the number and
size of the small steps that the solver uses during the simulation.

There are no hard metrics for the size or number of small steps that are likely to cause a real-time-
simulation overrun. Moving your model from desktop simulation to real-time simulation is an iterative
process. The process, which involves modifying, simulating, and analyzing your model, helps you to
determine if the small steps in your model are time limiting or numerous enough to force an overrun.

Experience that you gain by simulating different models on your real-time machine can also help you
decide if the small steps in your model are likely to force an overrun. For example, consider a case
with two models, M1 and M2, and two different real-time processors, RT1 and RT2. Processors RT1
and RT2 have the same nominal processing speed. Models M1, a mechanical model, and M2, an
electrical model, both have a few steps that are 1e-15 seconds. It is possible for model M1 to simulate
with sufficiently accurate results on real-time processor RT1, but to incur an overrun or simulate with
insufficiently accurate results on real-time processor RT2. It is also possible that model M1 runs to
completion with accurate results on RT1 and RT2, whereas model M2 generates an overrun on both
processors. These scenarios are possible because the distinct model topologies yield different
dynamics and because nominal processing speed is not the only determinant for simulation execution
time. Other factors such as the operating system and I/O configuration also affect how simulation
execution proceeds on a real-time processor. Familiarity with system dynamics and the processing
power of your real-time equipment can guide your decision making when you assess the impact of
small step sizes on the real-time viability of a model.

Adjust Model Fidelity or Scope

Modify the model to increase speed or accuracy if your analysis indicates that real-time simulation
with the model is likely to have an overrun or yield insufficiently accurate results.

When you evaluate overrun risk, if you find that the simulation uses too many small steps, use these
approaches to improve simulation speed:

• Reduce computation costs.
• Reduce numerical stiffness.
• Reduce zero crossings.
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• Reduce fast dynamics
• Partition the model for parallel processing.

When you evaluate model accuracy, if you find that the simulation results do not match the reference
results, use these approaches to improve model accuracy:

• Simulink best practices for modeling dynamic systems
• Simscape essential modeling techniques

Obtain Results with a Variable-Step Solver

Using a Simulink global variable-step solver, obtain results for the modified version of your model.

The step size plot also helps you to:

• Estimate the maximum step size to use for the fixed-step solver to achieve accurate results during
real-time simulation.

• Identify the exact times when discontinuities or fast dynamics slow down the simulation.

Evaluate Model Accuracy

Compare the results from simulating on the target computer to your reference results. Are the
reference and modified model results the same? If not, are they similar enough that the empirical or
theoretical data also supports the results from the simulation of the modified model? Is the modified
model representing the phenomena that you want it to measure? Is it representing those phenomena
correctly? If you plan on using your model to test your controller design, is the model accurate
enough to produce results that you can rely on for system qualification? The answers to these
questions help you to decide if your real-time results are accurate enough.

Perform Real-Time Simulation Workflow

When variable-simulation results indicate that your model has the speed and accuracy required for
real-time processing, you can use the “Real-Time Simulation Workflow” on page 11-72 to configure
your model for fixed-step, fixed-cost simulation.

Return to the Real-Time Model Preparation Workflow

The connector is an entry point for returning to the real-time model preparation workflow from
another workflow (for example, the real-time simulation workflow or the hardware-in-the-loop
simulation workflow).

Insufficient Computational Capability for Workflow Completion
It is possible that your real-time target machine lacks the computational capability for running your
model in real time. If, after multiple iterations of the workflow, there is no level of model complexity
that makes your model real-time capable, consider these options for increasing processing power:

• “Upgrading Target Hardware” on page 11-10
• “Simulating Parts of the System in Parallel” on page 11-10
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See Also

Related Examples
• “Determine Step Size” on page 11-12
• “Estimate Computation Costs” on page 11-87
• “Reduce Computation Costs” on page 11-25
• “Reduce Fast Dynamics” on page 11-29
• “Reduce Numerical Stiffness” on page 11-47
• “Reduce Zero Crossings” on page 11-55
• “Partition a Model” on page 11-64
• “Manage Model Variants” on page 11-70

More About
• “Essential Physical Modeling Techniques” on page 1-12
• “Hardware-In-The-Loop Simulation Workflow” on page 11-106
• “Improving Speed and Accuracy” on page 11-8
• “Model Preparation Objectives” on page 11-2
• “Real-Time Simulation Workflow” on page 11-72
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Improving Speed and Accuracy
In this section...
“Why Speed and Accuracy Matter for Real-Time Simulation” on page 11-8
“Balancing Speed and Accuracy” on page 11-9
“Eliminating Effects That Require Intensive Computation” on page 11-9
“Optimizing Local and Global Solver Configurations” on page 11-10
“Upgrading Target Hardware” on page 11-10
“Simulating Parts of the System in Parallel” on page 11-10

Why Speed and Accuracy Matter for Real-Time Simulation
Speed and accuracy are the determining factors for making your model real-time capable. Your model
is real-time capable if it satisfies both of these conditions when you simulate it on your particular
target hardware:

• There are no overruns.
• The simulation results meet your criteria for accuracy.

Speed is objective. The real-time clock determines whether your model is fast enough for real-time
simulation. For each step that your solver takes, your real-time hardware system tracks the time that
it takes to complete these processing tasks:

• Execute the simulation.
• Process input and output.
• Perform general computer tasks.

An overrun occurs when, for any time step, the time that it takes your system to complete the
processing tasks exceeds the real-time limit for the tasks. If your target machine reports any overruns
when you use it to simulate your model, your model is not fast enough for real-time simulation.

Your Simscape model is accurate if it produces results that agree with the empirical and theoretical
data that are the basis for your model. Accuracy is more subjective when the foundation and
simulation data are similar, but are not in absolute agreement. To determine if your model is accurate
enough for real-time simulation when the data do not match perfectly, consider these questions:

• Is the model representing the phenomena that you want it to measure?
• Is it representing those phenomena correctly?
• If you plan to use your model to test your controller design, is the model accurate enough to

produce results that you can rely on for system qualification?

The only way to test whether your model is real-time capable is to run it on your actual real-time
target hardware using fixed-step, fixed-cost solvers. You can, however, estimate whether the model is
both fast and accurate enough for real-time simulation by analyzing the results from desktop
simulation. To estimate whether your model is real-time capable, see “Determine Step Size” on page
11-12 and “Estimate Computation Costs” on page 11-87.

If the analysis from the desktop simulation indicates that your model likely is not real-time capable,
increase model speed or accuracy before deploying your model to your real-time target machine.
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Increasing the speed of your simulation tends to decrease the accuracy, and conversely increasing
accuracy decreases speed. To make your model real-time capable, maintain a balance between speed
and accuracy.

Balancing Speed and Accuracy
Simulation speed and accuracy correlate to your choices for:

• Model fidelity and scope
• Real-time hardware computing power
• Solver sample time (step size) and number of iterations

To try to increase simulation speed, potentially at the expense of accuracy:

• Decrease model fidelity or scope.
• Increase sample time.
• Decrease the number of solver iterations.

To try to increase simulation accuracy, potentially at the expense of speed:

• Increase model fidelity or scope.
• Decrease sample time.
• Increase the number of solver iterations.

To try to increase both accuracy and speed, or either one without sacrificing the other, increase
computing power. To increase computing power, use a faster real-time processor or compute in
parallel.

The type of solver that you specify also affects simulation speed and accuracy. For fixed-step
simulation, Simscape local solvers are faster and as accurate as Simulink global solvers. Implicit
solvers are faster, but less accurate than explicit solvers. However, the numerical stiffness of the
network is also a determinant for deciding whether to use an implicit solver or an explicit solver.
Explicit solvers yield more accurate results for numerically stiff networks.

For more information on how model complexity affects speed and accuracy, see “Eliminating Effects
That Require Intensive Computation” on page 11-9. For more information, on how solver
configurations affect speed and accuracy, see “Optimizing Local and Global Solver Configurations” on
page 11-10.

It is possible that there is no combination of model complexity and solver settings that can make your
model real-time capable. If the simulation does not run in real time on the target machine, or if the
accuracy is unacceptable, consider these options for increasing speed and accuracy:

• “Upgrading Target Hardware” on page 11-10
• “Simulating Parts of the System in Parallel” on page 11-10

Eliminating Effects That Require Intensive Computation
If your desktop simulation analysis indicates that your model likely is not fast enough for real-time
simulation, eliminate effects that require intensive computation. Identify elements in your model that
cause costly effects, such as discontinuities and rapid changes, that tend to slow down simulations.
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Elements that cause discontinuities include:

• Hard stops or backlash
• Stick-slip friction
• Switches or clutches

Elements with small time constants that cause rapid changes include:

• Small masses attached to stiff springs with minimal damping
• Electrical circuits with low capacitance, inductance, and resistance
• Hydraulic circuits with small compressible volumes

To eliminate or modify the elements that are responsible for the effects that slow down your
simulation, use these approaches:

• Replace nonlinear components with linearized versions.
• Replace complex equations with lookup tables for their solution.
• Replace complicated components with simplified models.
• Smooth discontinuous functions (step changes) with filters, delays, and other techniques.

Optimizing Local and Global Solver Configurations
You can also influence the speed and accuracy of your simulation by way of your solver specifications.
The level of accuracy that your real-time target machine delivers does not necessarily correlate to a
specific step size across all networks in a single model. A real-time target machine can give accurate
results for a simple network in your model but inaccurate results for a more complex network. Take
advantage of the ability to specify different solver configurations for each network in your Simscape
model. To help make your model real-time capable, configure your fixed-step global solver and each
local solver individually.

For information on solver options and determining the solvers that help to make your Simscape model
real-time capable, see “Solvers for Real-Time Simulation” on page 11-76.

Upgrading Target Hardware
Different targets give varying levels of accuracy when using the same step size to simulate the same
model. You can speed up or increase the accuracy of the real-time simulation by using a faster real-
time target computer.

Simulating Parts of the System in Parallel
Another approach for increasing speed while maintaining accuracy is to configure your model to
evaluate multiple physical networks in parallel. You can partition your model if the networks are not
dependent upon one another. Work with and experiment with your model, the generated code, and
the real-time target machine to use this approach.
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See Also

Related Examples
• “Determine Step Size” on page 11-12
• “Estimate Computation Costs” on page 11-87
• “Reduce Computation Costs” on page 11-25
• “Reduce Fast Dynamics” on page 11-29
• “Reduce Numerical Stiffness” on page 11-47
• “Reduce Zero Crossings” on page 11-55
• “Partition a Model” on page 11-64

More About
• “Model Preparation Objectives” on page 11-2
• “Real-Time Model Preparation Workflow” on page 11-4
• “Solvers for Real-Time Simulation” on page 11-76
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Determine Step Size
For the first step in “Real-Time Model Preparation Workflow” on page 11-4, you obtain results from a
variable-step simulation of the reference version of your Simscape model. The reference results
provide a baseline against which you can assess the accuracy of your model as you modify it. This
example shows how to analyze the reference results and the step size that the variable-step solver
takes to:

• Estimate the maximum step size that you can use for a fixed-step simulation
• Identify events that have the potential to limit the maximum step size

Discontinuities and rapid changes require small step sizes for accurately capturing these dynamics.
The maximum step size that you can use for a fixed-step simulation must be small enough to ensure
accurate results. If your model contains such dynamics, then it is possible that the required step size
for accurate results, Tsmax, is too small. A step size that is too small does not allow your real-time
computer to finish calculating the solution for any given step in the simulation.

The analysis in this example helps you to estimate the maximum step size that fixed-step solvers can
use and still obtain accurate results. You can also use the analysis to determine which elements
influence the maximum step size for accurate results. For more information on how obtaining
reference results and performing a step-size analysis helps you to prepare your model for real-time
simulation, see “Model Preparation Objectives” on page 11-2.

1 To open the reference model, at the MATLAB command prompt, enter:

model = 'ssc_pneumatic_rts_reference';
open_system(model)

2 Simulate the model:

sim(model)
3 Create a semilogarithmic plot that shows how the step size for the solver varies during the

simulation.
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h1 = figure;
semilogy(tout(1:end-1),diff(tout),'-x')
title('Solver Step Size')
xlabel('Time (s)')
ylabel('Step Size (s)')

For much of the simulation, the step size is greater than the value of the Tsmax in the plot. The
corresponding value, ~0.001 seconds, is an estimated maximum step size for achieving accurate
results during fixed-step simulation with the model. To see how to configure the step size for
fixed-step solvers for real-time simulation, see “Choose Step Size and Number of Iterations” on
page 11-89.

The x markers in the plot indicate the time that the solver took to execute a single step at that
moment in the simulation. The step-size data is discrete. The line that connects the discrete
points exists only to help you see the order of the individual execution times over the course of
the simulation.

A large decrease in step size indicates that the solver detects a zero-crossing event. Zero-
crossing detection can happen when the value of a signal changes sign or crosses a threshold.
The simulation reduces the step size to capture the dynamics for the zero-crossing event
accurately. After the solver processes the dynamics for a zero-crossing event, the simulation step
size can increase. It is possible for the solver to take several small steps before returning to the
step size that precedes the zero-crossing event. The areas in the red boxes contain variations in
recovery time for the variable step solver.

4 To see different post-zero-crossing behaviors, zoom to the region in the red box at time (t) = ~1
second.
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Script for Zooming In

h1;
xStart = 0;
xEnd = 10;
yStart = 0;
yEnd = 10e0;
xZoomStart1 = 1.001;
xZoomEnd1 = 1.028;
yZoomStart1 = 1.5e-15;
yZoomEnd1 = 3.71e-3;
axis([xZoomStart1 xZoomEnd1 yZoomStart1 yZoomEnd1])

After t = 1.005 seconds, the step size decreases from ~10e-3 seconds to less than 10e-13
seconds to capture an event. The step size increases quickly to ~10e-5 seconds, and then slowly
to ~10e-4 seconds. The step size decreases to capture a second event and recovers quickly, and
then slowly to the step size from before the first event. The slow rates of recovery indicate that
the simulation is using small steps to capture the dynamics of elements in your model. If the
required step size limits the maximum fixed-step size to a small enough value, then an overrun
might occur when you attempt simulation on your real-time computer.

The types of elements that require small step size are:

• Elements that cause discontinuities, such as hard-stops and stick-slip friction
• Elements that have small time constants, such as small masses with undamped, stiff springs

and hydraulic circuits with small, compressible volumes
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The step size recovers more quickly after it slows down to process the event that occurs before t
= 1.02 seconds. This event is less likely to require small step sizes to achieve accurate results.

5 To see different types of slow solver recoveries, zoom to the region within the red box at t = ~4.2
seconds.

h1;
xZoomStart2 = 4.16;
xZoomEnd2 = 4.24;
yZoomStart2 = 10e-20;
yZoomEnd2 = 10e-1;
axis([xZoomStart2 xZoomEnd2 yZoomStart2 yZoomEnd2]);

Just as there are different types of events that cause solvers to slow down, there are different
types of slow solver recovery. The events that occur just before t = 4.19 and 4.2 seconds both
involve zero-crossings. The solver takes a series of progressively larger steps as it reaches the
step size from before the event. The large number of very small steps that follow the zero
crossing at Slow Recovery A indicate that the element that caused the zero crossing is also
numerically stiff.

The quicker step-size increase after the event that occurs at t = 4.2 seconds indicates that the
element that caused the zero crossing before Slow Recovery B, is not as stiff as the event at Slow
Recovery A.

6 To see the results, open the Simscape Results Explorer.

sscexplore(simlog)
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7 Examine the angular speed. In the Simscape Results Explorer window, in the simulation log tree
hierarchy, select Measurements > Ideal Rotational Motion Sensor > w.

8 To add a plot of the gas flow, select Measure Flow > Pneumatic Mass & Heat Flow Sensor
and then, use Ctrl+click to select G_ps.
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The slow recovery times occur when the simulation initializes, and approximately at t = 1, 4, 5, 8,
and 9 seconds. These periods of small steps coincide with these times:

• The motor speed is near zero rpm (simulation time t = ~ 1, 5, and 9 seconds)
• The step change in motor speed is initiated from a steady-state speed to a new speed (time t

= ~ 4 and 8 seconds)
• The step change in flow rate is initiated from a steady-state speed to a new flow rate (time t =

~ 4 and 8 seconds)
• The volumetric flow rate is near zero kg/s (t = ~ 1, 4, and 5 seconds)

These results indicate that the slow step-size recoveries are most likely due to elements in the
model that involve friction or that have small, compressible volumes. To see how to identify the
problematic elements and modify them to increase simulation speed, see “Reduce Numerical
Stiffness” on page 11-47 and “Reduce Zero Crossings” on page 11-55.

See Also
Solver Profiler

Related Examples
• “Examine Model Dynamics Using Solver Profiler” (Simulink)
• “Estimate Computation Costs” on page 11-87
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• “Reduce Computation Costs” on page 11-25
• “Reduce Fast Dynamics” on page 11-29
• “Reduce Numerical Stiffness” on page 11-47
• “Reduce Zero Crossings” on page 11-55
• “Choose Step Size and Number of Iterations” on page 11-89

More About
• “About Simulation Data Logging” on page 13-2
• “Events and Zero Crossings” on page 7-3
• “Improving Speed and Accuracy” on page 11-8
• “Log and View Simulation Data for Selected Blocks” on page 13-15
• “Model Preparation Objectives” on page 11-2
• “Real-Time Model Preparation Workflow” on page 11-4
• “Real-Time Simulation Workflow” on page 11-72
• “Solvers for Real-Time Simulation” on page 11-76
• “Stiffness” on page 7-2
• “Zero-Crossing Detection” (Simulink)

11 Real-Time Simulation

11-18



Increase Simulation Speed Using the Partitioning Solver
The Partitioning solver is a Simscape fixed-step local solver that improves performance for certain
models by reducing computational cost of simulation. Decreased computational cost yields faster
simulation rates for desktop simulation and decreased task execution time (TET) for deployment. The
solver converts the entire system of equations for the attached Simscape network into several smaller
sets of switched linear equations that are connected through nonlinear functions. Computational cost
is reduced because it is more efficient to calculate solutions for several smaller equation systems than
it is to calculate the solution for one large system of equations.

The Partitioning solver does not partition models, that is it does not split a model into separate
subsystems for multicore processing. To learn how to partition a Simscape model, see “Partition a
Model” on page 11-64.

To use the Partitioning solver, open the Solver Configuration block settings and:

1 Select the Use local solver check box.
2 Set the Solver type parameter to Partitioning.
3 Clear the Start simulation from steady state check box.
4 Set the Equation formulation parameter to Time.

For real-time simulation, also select the Use fixed-cost runtime consistency iterations check box.
For more information, see “Make Your Model Real-Time Viable” on page 11-74.

Limitations
Not all networks can simulate with the Partitioning solver. A simulation that uses the Partitioning
solver results in an error if the Simscape network cannot be represented by switched linear equations
connected through nonlinear functions. Simulating with the Partitioning solver also yields an error for
networks that contain:

• A custom component that uses the Simscape language delay operator.
• A block that uses a discrete sample time for periodic events. Examples include the Counter,

Random Number, Repeating Sequence, or Uniform Random Number blocks from the Simscape/
Physical Signals / Sources library.

Certain Solver Configuration block settings are not compatible with the Partitioning solver. A
simulation that uses a Partitioning solver results in an error if the model contains a Solver
Configuration block with:

• Start simulation from steady state selected
• Equation formulation set to Frequency and time

Options
To further improve simulation performance, you can set the Partition storage method parameter to
Exhaustive and specify a value for the Partition memory budget [kB] parameter, based on the
Total memory estimate data in the Statistics Viewer. For more information, see Solver
Configuration and “Model Statistics Available when Using the Partitioning Solver” on page 14-16.
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Simulate a Simscape Model Using the Partitioning Solver
This example shows how to compare the speed and the accuracy of a simulation that uses the
Partitioning solver to baseline results. It also shows how to compare the speeds of the Partitioning
solver and the Backward Euler solver.

1 Open the model. At the MATLAB command prompt, enter the code.

See Code

model = 'ssc_dcmotor';
open_system(model)

2 To return all simulation outputs within a single Simulink.SimulationOutput object so that
you can later compare simulation times, enable the single-output format of the sim command.

% Enable single-output format 
set_param(model,'ReturnWorkspaceOutputs', 'on')

3 Enable the signal that goes to the Motor RPM scope block for Simulink data logging and
viewing with the Simulink Data Inspector.

See Code

% Define the w sensor subsystem and the path
%    to it as variables
rpmSensor = 'Sensing';
rpmSensorPath = [model,'/',rpmSensor];

% Mark the output signal from the w sensor subsystem 
%   for Simulink(R) data logging
phRpmSensor = get_param(rpmSensorPath,'PortHandles');
set_param(phRpmSensor.Outport(1),'DataLogging','on')

The logging badge  marks the signal in the model.
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4 Run timed simulations for each of these solvers:

• Variable-step global solver, the original solver for the model
• Fixed-step local Backward Euler solver
• Fixed-step local Partitioning solver

See Code
% Define the Solver Configuration block and the path
%    to it as variables
solvConfig = 'Solver Configuration';
solvConfigPath = [model,'/',solvConfig];

% Run a timed simulation using the original solver
out = sim(model);
tBaseline  = out.SimulationMetadata.TimingInfo.ExecutionElapsedWallTime; 

% Select option Solver Configuration >  Use local solver
set_param(solvConfigPath, 'UseLocalSolver', 'on')

% Set Solver Configuration >  Solver type > Partitioning
set_param(solvConfigPath, 'LocalSolverChoice',...
    'NE_PARTITIONING_ADVANCER') 

% Run a timed simulation using the Partitioning solver
out = sim(model);
tPartition = out.SimulationMetadata.TimingInfo.ExecutionElapsedWallTime; 

% Set Solver Configuration >  Solver type > Backward Euler
set_param(solvConfigPath, 'UseLocalSolver', 'on',...
    'LocalSolverChoice','NE_BACKWARD_EULER_ADVANCER')

%%
% Run a timed simulation using the Backward Euler solver
out = sim(model);
tBackEuler = out.SimulationMetadata.TimingInfo.ExecutionElapsedWallTime; 

% Compute the percent difference for the simulation times
spdPartitionVsBaseline = 100*(tBaseline - tPartition)/tBaseline;
spdBackEulerVsBaseline = 100*(tBaseline - tBackEuler)/tBaseline;
spdPartitionVsBackEuler = 100*(tBackEuler - tPartition)/tBackEuler;

% Reset the solver to the original setting by deselecting Use local solver
set_param(solvConfigPath, 'UseLocalSolver', 'off')

%%
compTimeDiffTable = table({'Baseline';...
    'Partitioning';...
    'Backward Euler'},...
    {tBaseline;tPartition;tBackEuler},...
'VariableNames', {'Solver','Sim_Duration'});

display(compTimeDiffTable);

%%
compPctDiffTable = table({'Partitioning versus Baseline';...
    'Backward Euler versus Baseline';...
    'Partitioning versus Backward Euler'},...
    {spdPartitionVsBaseline;...
    spdBackEulerVsBaseline;...
    spdPartitionVsBackEuler},...
'VariableNames', {'Comparison','Percent_Difference'});

display(compPctDiffTable);

compTimeDiffTable =

  3×2 table

         Solver         Sim_Duration
    ________________    ____________

    'Baseline'            [0.0319]  
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    'Partitioning'        [0.0204]  
    'Backward Euler'      [0.0291]  

compPctDiffTable =

  3×2 table

                 Comparison                 Percent_Difference
    ____________________________________    __________________

    'Partitioning versus Baseline'              [35.9128]    
    'Backward Euler versus Baseline'            [ 8.6623]    
    'Partitioning versus Backward Euler'        [29.8349]        

Simulation time on your machine may differ because simulation speed depends on machine
processing power and the computational cost of concurrent processes.

The local fixed-step Partitioning and Backward Euler solvers are faster than the variable-step
baseline solver. The Partitioning solver is typically, but not always, faster than the Backward
Euler solver.

5 To compare the results, open the Simulink Data Inspector.

See Code
% Get Simulink Data Inspector run IDs for 
%    the last three runs
runIDs = Simulink.sdi.getAllRunIDs;
runBaseline = runIDs(end - 2);
runPartition = runIDs(end - 1);
runBackEuler = runIDs(end);

% Open the Simulink Data Inspector
Simulink.sdi.view

compBaselinePartition = Simulink.sdi.compareRuns(runBaseline,...
    runPartition);

To see the comparison, click Compare and then click Sensing 1.
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The first plot shows the overlay of the baseline and Partitioning solver simulation results. The
second plot shows how they differ. The default tolerance for differences is 0. To determine if the
accuracy of the results meet your requirements, you can adjust the relative, absolute, and time
tolerances. For more information, see “Compare Simulation Data” (Simulink).

See Also

Related Examples
• “Determine Step Size” on page 11-12
• “Estimate Computation Costs” on page 11-87
• “Reduce Fast Dynamics” on page 11-29
• “Reduce Numerical Stiffness” on page 11-47
• “Reduce Zero Crossings” on page 11-55
• “Partition a Model” on page 11-64

More About
• “Model Statistics Available when Using the Partitioning Solver” on page 14-16
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• “About Simulation Data Logging” on page 13-2
• “Limitations” on page 13-3
• “Improving Speed and Accuracy” on page 11-8
• “Log, Navigate, and Plot Simulation Data” on page 13-18
• “Model Preparation Objectives” on page 11-2
• “Real-Time Model Preparation Workflow” on page 11-4
• “Real-Time Simulation Workflow” on page 11-72
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Reduce Computation Costs

In this section...
“Data Logging and Monitoring Guidelines” on page 11-25
“Improve Data Logging and Monitoring Efficiency” on page 11-25
“Additional Methods for Reducing Computational Cost” on page 11-28

In this section...
“Data Logging and Monitoring Guidelines” on page 11-25
“Improve Data Logging and Monitoring Efficiency” on page 11-25
“Additional Methods for Reducing Computational Cost” on page 11-28

Computational cost is a measure of the number and the complexity of tasks that a processor performs
per time step during a simulation. Lowering the computational cost of your model increases
simulation execution speed and helps you to avoid overruns when you simulate in real time on target
hardware.

Data Logging and Monitoring Guidelines
Data logging and monitoring are interactive procedures that consume memory and processing power.
One way to reduce computational cost is to reduce the amount of interactive processing that occurs
during simulation. Best practices for limiting computational costs while logging and monitoring data
are:

• Use an outport block only if you need to log data for your analysis via the Simulink model on your
development computer.

• Use a scope block only if you need to monitor data during real-time simulation via the Simulink
model on your development computer.

• If you need to log data or monitor a variable, limit the number or the decimation of data points
that you collect whenever your analysis requirements permit you to do so.

• Log data only once.
• If you use Simscape data logging, use local settings to log only the blocks that contain variables

that you need for your analysis.

Note Simscape simulation data logging is not supported for generated code.

Improve Data Logging and Monitoring Efficiency
Examine the configuration of the model and the simulation results to determine if the model is
logging and monitoring data efficiently.

1 To open the model, at the MATLAB command prompt, enter:

model = 'ssc_pneumatic_rts_zc_redux';
open_system(model)
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The model contains three scope blocks and one outport block. The Power (kW) scope, RPM
scope, and outport block receive data from the Measurements subsystem.

2 Simulate the model:

sim(model)

The model logs five variables to the workspace, including a Simscape simulation data logging
node.

3 To determine the source for the Pneu_rts_RPM_DATA, in the MATLAB workspace, open the
structure. Alternately, at the command line, enter:

Pneu_rts_RPM_DATA.blockName

ans =

    'ssc_pneumatic_rts_zc_redux/RPM'

The blockName variable shows that the RPM scope logs the data. In the model, the outport that
logs data to yout connects to the signal between the Measurements subsystem and the RPM
scope block.

4 To compare the data that Pneu_rts_RPM_DATA and yout log, plot both data sets to a single
figure.

h1 = figure;
plot(tout,yout)
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h1;
hold on
plot(Pneu_rts_RPM_DATA.time,Pneu_rts_RPM_DATA.signals.values,'r--')
title('Speed')
xlabel('Time (s)')
ylabel('Speed (rpm)')
h1Leg = legend({'yout','Pneu-rts-RPM-DATA'});

The data is the same, which means that you are logging the same data twice.

To reduce the computational cost for logging or monitoring the speed data via the Simulink model on
your development computer during real-time simulation:

• If you only need to log the speed data, delete the RPM scope block.
• If you need to log and monitor the speed data, delete the outport block.
• If you only need to monitor the speed data, delete the outport block and disable data logging for

the RPM scope.

If you do not need to log or monitor the speed data via the Simulink model on your development
computer during real-time simulation with target hardware, delete both the RPM scope block and the
outport block.

If you want to reduce costs by deleting the scope and outport blocks, but you want to log data while
you prepare your model for real-time simulation, configure the model to log only the data that you
need. To do so, use a simlog node in the MATLAB workspace. For information, see “Log Data for
Selected Blocks Only” on page 13-5.
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Additional Methods for Reducing Computational Cost
In addition to reducing the number of logged and monitored signals, you can use these methods for
decreasing the number and complexity of tasks that the processor performs per time step during
simulation:

• Avoid using large images and complex graphics.
• Disable unnecessary error and warning diagnostics.
• Reconfigure tolerances.
• Simplify complex subsystems or replace them with lookup tables.
• Linearize nonlinear effects.
• Eliminate redundant calculations, for example, multiplication by one.
• Reduce the number of differential algebraic equations (DAEs).

See Also

Related Examples
• “Determine Step Size” on page 11-12
• “Estimate Computation Costs” on page 11-87
• “Reduce Fast Dynamics” on page 11-29
• “Reduce Numerical Stiffness” on page 11-47
• “Reduce Zero Crossings” on page 11-55
• “Partition a Model” on page 11-64

More About
• “About Simulation Data Logging” on page 13-2
• “Limitations” on page 13-3
• “Improving Speed and Accuracy” on page 11-8
• “Log, Navigate, and Plot Simulation Data” on page 13-18
• “Model Preparation Objectives” on page 11-2
• “Real-Time Model Preparation Workflow” on page 11-4
• “Real-Time Simulation Workflow” on page 11-72
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Reduce Fast Dynamics
You can make your model real-time capable by identifying and reducing sources of fast or high-
frequency dynamics. A real-time capable model is one that produces acceptable results on a real-time
machine without generating overruns.The example shows you how to identify fast dynamics by
examining the frequency response and pole locations of a linearized model. It also shows how to
identify and remove sources of the fast dynamics.

Why Reduce Fast Dynamics
Models with fast dynamics typically have a high computational cost. Removing fast dynamics
decreases the computational cost and increases the minimum step size that you can specify for a
fixed-step, fixed-cost simulation. Using a larger step size increases the likelihood that your model is
real-time capable.

Frequency-Response Analysis
Frequency response describes the steady-state response of a system to sinusoidal inputs. For a linear
system, a sinusoidal input results in an output that is a sinusoid with the same frequency, ω, but with
a different amplitude and phase, θ.

Frequency analysis shows how amplitude and phase change over a given range of frequencies. For a
small change in frequency, a large magnitude or phase change indicates that a system has fast
dynamics. This example uses Bode plots, which allow you to see how the amplitude, in terms of
magnitude in dB, and phase vary as a function of frequency.
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Pole Analysis
Fast poles are also indicative of fast dynamics. Fast poles are poles that respond or oscillate rapidly.
Poles that have real components that are far to the left of the imaginary axis on the complex plane
have a fast response speed. Complex pole pairs that have imaginary components that are far from the
real axis oscillate rapidly. For example, the real pole at -1500 has a faster response speed than the
real pole at -1000 and the complex pole pair at -500 ± 1500i has a faster oscillation speed than the
complex pole pair at -500 ± 500i.

For state-space models, the poles are the eigenvalues of the A-matrix. This example shows you how to
examine pole speed by determining the state-space model and then, calculating and plotting the
eigenvalues of the A-matrix values.

Linearize the Model
The model in this example is not linear. Before performing the frequency-response and pole analyses,
trim, that is extract and specify operating points for linearization, and linearize the model.

1 Open and examine the model. At the MATLAB command prompt, enter:

%% Open the model
open_system('ssc_hydraulic_actuator_digital_control')
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In addition to signal-generation, operation, routing, and visualization blocks, the model contains
these blocks:

• Controller— A Transfer Fcn block that defines a continuous time representation of the
control system. A callback function for the model saves the numerator, num, and denominator,
den, of the transfer function as variables in the workspace.

•

— A Transport Delay block to represent the delays associated with computational
delay and the sample-and-hold function when deploying a discrete-time implementation of the
continuous time control system.

• Linearization I/O points— A subsystem that allows you to configure the system as a closed
loop, for trimming, or as an open loop, for linearization. The callback function for the model
configures the system as closed loop by setting ClosedLoop to 1 in the workspace.

• Hydraulic Actuator — A subsystem that contains the physical model of the plant.
2 Find a suitable operating point for linearizing the system. Simulate the model, extract the data

from the Simscape logging nodes, then plot and examine the results.

Script for Simulating the Model and Plotting the Results
%% Simulate the model and plot the simulation results
% Simulate the model
sim('ssc_hydraulic_actuator_digital_control')

% Extract simulation results from the Simscape logging nodes
simlog1 = simlog_ssc_hydraulic_actuator_digital_control;
pCylA1 = simlog1.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_A.A.p.series;
pCylB1 = simlog1.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_B.A.p.series;
aValve1 = simlog1.Hydraulic_Actuator.Custom_2_Way_Valve.Calculate_Orifice_Area.PS_Saturation.O.series;

% Plot simulation results 
h3_ssc_hydraulic_actuator_digital_control=figure('Name',...
    'ssc_hydraulic_actuator_digital_control',...
    'Outerposition', [1244 673 576 513]);

% Plot pressures
ah(1) = subplot(2,1,1);
plot(pCylA1.time,pCylA1.values,'LineWidth',6,'Color','b');
hold on
plot(pCylB1.time,pCylB1.values,'LineWidth',3,'Color','b');
hold off
grid on
ylabel('Pressure (Pa)');
title('Cylinder Pressures');
legend({'Side A','Side B'},'Location','Best');
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% Plot valve activity
ah(2) = subplot(2,1,2);
plot(aValve1.time,aValve1.values,'LineWidth',3,'Color','b');
grid on
title('Valve Opening vs. Time');
ylabel('Opening (m^2)');
xlabel('Time (s)');
linkaxes(ah,'x');

% Create legend
legend('Original','Location','southeast');

The custom two-way valve is open when the simulation time, t, is 2–3 seconds.
3 Trim the model. Perform closed-loop simulation, using t = 2.5 seconds, when the valve is open,

for the operating point.

Script for Trimming the Model

%% Trim the model
assignin('base','ClosedLoop',1); % Close the feedback loop
[t,x,y] = sim('ssc_hydraulic_actuator_digital_control');
idx = find(t>2.5,1);                                            
X = x(idx,:); 
U = y(idx);

4 Linearize an open-loop configuration of the continuous time model and save the state variables,
a, b, c, and d in the workspace using the linmod function.
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Script for Linearizing the Model

%% Linearize the model
assignin('base','ClosedLoop',0); % Break the feedback loop
[a,b,c,d]=linmod('ssc_hydraulic_actuator_digital_control',X,U);
assignin('base','ClosedLoop',1); % Close the feedback loop

Perform Frequency-Response and Pole-Speed Analyses
1 Generate a Bode plot.

Script for Generating a Bode Plot

%% Calculate and plot the frequency response
% Generate data
npts = 100;
w = logspace(-3,5,npts); 
G = zeros(1,npts);
for i=1:npts % Use negative feedback convention ( c:=-c, d:=-d)
    G(i) = (-c)*(2*pi*1i*w(i)*eye(size(a))-a)^-1*b +(-d);
end

% Create Bode plot figure
h4_ssc_hydraulic_actuator_digital_control=figure...
    ('Name','hydraulic_actuator_digital_control');

% Plot magnitude
ah(1) = subplot(2,1,1);
magline_h=semilogx(w,20*log10(abs(G)));
xlim(ah(1),[w(1),w(end)]);
grid on
ylabel('Magnitude (dB)');
title('Frequency Response (Hydraulic Actuator)');

% Plot phase
ah(2) = subplot(2,1,2);
phsline_h=semilogx(w,180/pi*unwrap(angle(G)));
set([magline_h,phsline_h],'LineWidth',1);
ylabel('Phase (deg)'); 
xlabel('Frequency (Hz)');
grid on
linkaxes(ah,'x');

% Create legend
legend('Original','Location','southwest');
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When the frequency, ω, is between 102 and 103 Hz, the phase drops by approximately 600
degrees. The rapid change in the phase shift, θ, indicates that the system has fast dynamics.

2 Calculate eigenvalues of the a matrix using the eig function and plot the poles in the complex
plane.

Script for Calculating and Plotting the A-Matrix Eigenvalues

%% Calculate and plot the poles
% Extract the poles
poles = eig(a);

% Extract the real and imaginary coordinates
X1 = real(poles); 
Y1 = imag(poles);

% Create complex plane plot figure
h5_ssc_hydraulic_actuator_digital_control = figure('Name',...
    'hydraulic_actuator_digital_control',...
    'OuterPosition',[668 150 1137 512]);

% Create axes
axes1 = axes('Parent',h5_ssc_hydraulic_actuator_digital_control,...
    'Position',[0.0315 0.112 0.932 0.815]);
hold(axes1,'on');

% Create title
title('Complex Plane Plot');
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% Plot poles
plot(X1,Y1,'DisplayName','Original Poles','Marker','*',...
    'MarkerSize',3,'LineStyle','none');

% Limit and label axes
xlim(axes1,[-3000 500]);
xlabel({'Real','Axis'});
ylim(axes1,[-2000 2000]);
ylabel({'Imaginary',' Axis'});
set(axes1,'XAxisLocation','origin','YAxisLocation','origin');
box(axes1,'on');

% Create legend
legend(axes1,'show','Original','Location','southwest');

There are six fast poles, including two potential oscillating pole pairs.
3 Confirm that there are pole pairs. Print the values of the six fast poles to the command window

using the eigs function.

Script for Printing Pole Values

%% Print fast-pole values
eigs(a,6)

ans =

   1.0e+03 *

  -2.0000 + 1.1547i
  -2.0000 - 1.1547i
  -0.4614 + 1.4208i
  -0.4614 - 1.4208i
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  -1.0314 + 0.0000i
  -1.0000 + 0.0000i

There are two sets of pole pairs.

Identify and Eliminate the Sources of Fast Dynamics
Examine the model for potential sources of fast dynamics.

1 To linearize the model, this example uses the linmod function. The documentation for the
linmod advises against using the function to linearize a model that contains a Transport Delay
block. The documentation for the Transport Delay block indicates that the Pade approximation
for a linearization routine can add dynamic states to a model. Determine if the block is the source
of the fast poles that result in the linearized model.

2 To simulate the model without the effects of the Transport Delay block, comment through the
block.

Script for Commenting Out Transport Delay Block

%% Eliminate Transport Delay block from the network
set_param('ssc_hydraulic_actuator_digital_control/Transport Delay',...
    'Commented','through')

The icon for the Transport Delay fades to indicate that it is commented through.
3 To examine the frequency response of the model without the effects of the Transport Delay block,

trim, linearize, and simulate the model, and then, update the Bode plot.

Script for Trimming and Linearizing the Model and Updating the Bode Plot

%% Trim, Linearize, and update the Bode plot.
% Trim
assignin('base','ClosedLoop',1); % Close the feedback loop
[t,x,y] = sim('ssc_hydraulic_actuator_digital_control');
idx = find(t>2.5,1);                                            
X = x(idx,:); 
U = y(idx);

% Linearize
assignin('base','ClosedLoop',0); % Break the feedback loop
[a,b,c,d]=linmod('ssc_hydraulic_actuator_digital_control',X,U);
assignin('base','ClosedLoop',1); % Close the feedback loop

11 Real-Time Simulation

11-36



% Generate data 
npts = 100; w = logspace(-3,5,npts); G = zeros(1,npts);
for i=1:npts % Use negative feedback convention ( c:=-c, d:=-d)
    G(i) = (-c)*(2*pi*1i*w(i)*eye(size(a))-a)^-1*b +(-d);
end

% Update the Bode plot figure
figure(h4_ssc_hydraulic_actuator_digital_control);
hold on
ah(1) = subplot(2,1,1);
hold on
magline_h=semilogx(w,20*log10(abs(G)),'--');
xlim(ah(1),[w(1),w(end)]);
ah(2) = subplot(2,1,2);
hold on
phsline_h=semilogx(w,180/pi*unwrap(angle(G)),'--');
set([magline_h,phsline_h],'LineWidth',1);
linkaxes(ah,'x');
legend('Original','No Transport Delay','Location','southwest');

When the frequency, ω, is between 102 and 103 Hz, the phase drops by only by ~250 degrees.
4 Calculate and plot the fast poles.

Script for Calculating and Plotting the A-Matrix Eigenvalues

%% Calculate and plot the poles
% Extract the poles
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poles = eig(a);

% Extract the real and imaginary coordinates
X1 = real(poles); 
Y1 = imag(poles);

% Update the complex plane plot figure
figure(h5_ssc_hydraulic_actuator_digital_control)
hold on
plot(X1,Y1,'DisplayName','No Transport Delay','Marker','d',...
    'MarkerSize',5,'LineStyle','none');

The Transport Delay block is responsible for the missing oscillatory pole pair at -2000 ± 1.1547i
rad/sec

5 Plot the simulation results to see if they adequately match the original results.

Script for Simulating the Model and Plotting the Results
%% Plot the simulation results
% Get simulation results
simlog2 = simlog_ssc_hydraulic_actuator_digital_control;
pCylA = simlog2.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_A.A.p.series;
pCylB = simlog2.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_B.A.p.series;
aValve = simlog2.Hydraulic_Actuator.Custom_2_Way_Valve.Calculate_Orifice_Area.PS_Saturation.O.series;

% Update figure
figure(h3_ssc_hydraulic_actuator_digital_control)
hold on
ah(1) = subplot(2,1,1);
hold on
plot(pCylA.time,pCylA.values,'LineWidth',3,'Color','r','LineStyle','-');
hold on
plot(pCylB.time,pCylB.values,'LineWidth',1,'Color','r','LineStyle','-');
legend({'Side A','Side B'},'Location','Best');
hold off
ah(2)= subplot(2,1,2);
hold on
plot(aValve.time,aValve.values,'LineWidth',1,'Color','r','LineStyle','-');
hold off
legend({'Original','No Transport Delay'},'Location','southeast');
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The results appear similar.
6 Zoom to evaluate accuracy in more detail.

Script for Zooming In

%% Zoom the figure
% Define the x-axis limits
xStart = 0;
xEnd = 10;
xZoomStart1 = 1.78;
xZoomEnd1 = 1.88;

% Zoom in
figure(h3_ssc_hydraulic_actuator_digital_control);
ah(2);
xlim([xZoomStart1, xZoomEnd1]);
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At this level, you can see a small difference in the results for the modified model. However, the
simulation is accurate enough that the results meet expectations based on empirical and
theoretical data.

7 The model includes hydraulic compressibility, that is, oil column resonance. To confirm that the
column resonance is responsible for the second oscillatory pole pair, turn off compressibility and
repeat the frequency response and pole analyses.

Script for Eliminating Compressibility and Performing the Frequency Response and Pole
Analysis

%% Remove Compressibility
model = 'ssc_hydraulic_actuator_digital_control';
subsystem = 'Hydraulic Actuator';
composite_block = 'Hydraulic Cylinder';

CylA = [model,'/',subsystem,'/',composite_block,'/Chamber A'];
CylB = [model,'/',subsystem,'/',composite_block,'/Chamber B'];
set_param(CylA, 'Compressibility', '0')
set_param(CylB, 'Compressibility', '0')

%% Trim
assignin('base','ClosedLoop',1); % Close the feedback loop
[t,x,y] = sim('ssc_hydraulic_actuator_digital_control');
idx = find(t>2.5,1);                                            
X = x(idx,:); U = y(idx);

%% Linearize
assignin('base','ClosedLoop',0); % Break the feedback loop
[a,b,c,d]=linmod('ssc_hydraulic_actuator_digital_control',X,U);
assignin('base','ClosedLoop',1); % Close the feedback loop
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%% Update Bode plot
% Generate data
npts = 100; 
w = logspace(-3,5,npts); 
G = zeros(1,npts);
for i=1:npts % Use negative feedback convention ( c:=-c, d:=-d)
    G(i) = (-c)*(2*pi*1i*w(i)*eye(size(a))-a)^-1*b +(-d);
end

figure(h4_ssc_hydraulic_actuator_digital_control);
hold on
ah(1) = subplot(2,1,1);
hold on
magline_h=semilogx(w,20*log10(abs(G)));
xlim(ah(1),[w(1),w(end)]);
% figure(h4_ssc_hydraulic_actuator_digital_control);
% hold on

ah(2) = subplot(2,1,2);
hold on
phsline_h=semilogx(w,180/pi*unwrap(angle(G)));
set([magline_h,phsline_h],'LineWidth',1);
linkaxes(ah,'x');
legend('Original','No Transport Delay','No Compressibility',...
    'Location','southwest');

%% Update complex plane plot
poles = eig(a);

figure(h5_ssc_hydraulic_actuator_digital_control)
hold on
X1 = real(poles); 
Y1 = imag(poles);
plot(X1,Y1,'DisplayName','No Compressibility','Marker','d',...
    'MarkerSize',8,'LineStyle','none');
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The further decrease in the phase drop reflects the reduction in high-frequency dynamics. There
are now two fast poles. Even though one of the fast poles has moved further away from the
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imaginary axis, there are fewer fast dynamics because the oscillating pole pair at 458.8 ±
1.4273i rad/sec is eliminated.

8 Print the values of the remaining two fast poles to the command window.

Script for Printing Pole Values

%% Print the pole values
eigs(a,2)

two_fast_poles =

   1.0e+03 *

   -2.6767
   -1.0000

The fast pole at -2677 rad/s corresponds to the load mass and hydraulic damping introduced by
the two orifice components in the hydraulic subsystem. These dynamics are central to the
simulation results. The fast pole at -1000 rad/s corresponds to the controller denominator, 0.001
s+1. The transfer function is integral to the controller design. No more dynamic modes can be
removed without changing important system-level behavior.

9 Plot the simulation results to see if they adequately match the original results.

Script for Plotting the Simulation Results
%% Print simulation results
% Get simulation results
simlog3 = simlog_ssc_hydraulic_actuator_digital_control;
pCylA = simlog3.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_A.A.p.series;
pCylB = simlog3.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_B.A.p.series;
aValve = simlog3.Hydraulic_Actuator.Custom_2_Way_Valve.Calculate_Orifice_Area.PS_Saturation.O.series;

% Update results
figure(h3_ssc_hydraulic_actuator_digital_control)
hold on
ah(1)= subplot(2,1,1);
hold on
plot(pCylA.time,pCylA.values,'LineWidth',1,'Color','y','LineStyle','--');
hold on
plot(pCylB.time,pCylB.values,'LineWidth',1,'Color','y','LineStyle','--');
legend({'Side A','Side B'},'Location','Best');
hold off
ah(2)= subplot(2,1,2);
hold on
plot(aValve.time,aValve.values,'LineWidth',1,'LineStyle','--');
legend({'Original','No Transport Delay','Compressibility'},'Location','southeast');
hold off

% Zoom out
figure(h3_ssc_hydraulic_actuator_digital_control);
ah(2);
xlim([xStart, xEnd]);
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The accuracy of the updated model seems acceptable.
10 Zoom to evaluate accuracy in more detail.

Script for Zooming In

%% Zoom the figure
% Zoom in
figure(h3_ssc_hydraulic_actuator_digital_control);
ah(2);
xlim([xZoomStart1, xZoomEnd1]);

11 Real-Time Simulation

11-44



At this level, you can see that there is only a small additional difference in the results for the
modified model. The accuracy of the simulation is acceptable.

See Also
Blocks
Transport Delay

Functions
eig | eigs | linmod

Related Examples
• “Determine Step Size” on page 11-12
• “Estimate Computation Costs” on page 11-87
• “Reduce Computation Costs” on page 11-25
• “Reduce Numerical Stiffness” on page 11-47
• “Reduce Zero Crossings” on page 11-55

More About
• “Model Preparation Objectives” on page 11-2
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• “Real-Time Model Preparation Workflow” on page 11-4
• “Linearizing Models” (Simulink)
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Reduce Numerical Stiffness
In this section...
“Why Reduce Stiffness?” on page 11-47
“Review Reference Results” on page 11-47
“Identify and Modify a Stiff Element” on page 11-49
“Analyze Results” on page 11-50

This example helps you to complete the steps outlined in “Real-Time Model Preparation Workflow” on
page 11-4 and to meet the goals described in “Model Preparation Objectives” on page 11-2.

In “Determine Step Size” on page 11-12, you use the results of a variable-step simulation of your
Simscape model to identify when step size decreases to capture behavior accurately at discontinuities
and for rapid dynamics in numerically stiff systems. These types of events often require solvers to
take steps that are too small to support real-time simulation. This example shows how to use the
results from “Determine Step Size” on page 11-12 to identify a numerically stiff element in your
model. It also shows how to modify the element for faster simulation without sacrificing accuracy.

Why Reduce Stiffness?
Numerical stiffness can prevent your model from being real-time capable. A real-time-capable model
is one that produces acceptable results without incurring overruns when you simulate it on your
target processor. Stiff systems contain dynamics that vary both quickly and slowly. When solvers take
large steps, they usually capture slowly changing dynamics, but they tend to miss rapid changes
unless they are taking small steps. Small step sizes cause overruns when they do not provide enough
time for a real-time computer to complete calculating solutions during a single step.

To you reduce numerical stiffness, you eliminate rapid changes. If there are no rapid changes, the
solver can take larger steps and still obtain accurate simulation results. The larger the step size, the
less likely it is that your model generates an overrun during real-time simulation.

Review Reference Results
1 To open the model, at the MATLAB command prompt, enter:

model = 'ssc_pneumatic_rts_reference';
open_system(model)
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2 Simulate the model:

sim(model)
3 Create a figure that contains a semilogarithmic plot of the solver step size, a plot of the motor

speed results, and a plot of the gas flow results.

h1 = figure;
subplot(3,1,1)
semilogy(tout(1:end-1),diff(tout),'-x')
title('Solver Step Size and Results')
ylabel('Step Size (s)')
subplot(3,1,2)
plot(tout,Pneu_rts_RPM_DATA.signals.values)
ylabel('Speed (rpms)')
subplot(3,1,3)
plot(tout,Pneu_rts_Vol_Flow_DATA.signals.values)
xlabel('Time (s)')
ylabel('Flow Rate (m^3/min)')
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The simulation takes steps smaller than 1e-10 seconds when:

• The motor speed is near zero rpm (simulation time t = ~ 1, 5, and 9 seconds)
• The step change in motor speed is initiated from a steady-state speed to a new speed (time t

= ~ 4 and 8 seconds)
• The step change in flow rate is initiated from a steady-state speed to a new flow rate (time t =

~ 4 and 8 seconds)
• The volumetric flow rate is near zero m^3/min (t = ~ 1, 4, and 5 seconds)

The results indicate that small step sizes are required to achieve accuracy when the simulation is
capturing dynamics that involve friction or small, compressible volumes. Elements that generate
zero crossings might also be responsible for the small steps and slow recovery times.

4 Assign the simulation results to new variables in the MATLAB workspace so that you can
compare the data to results from a model that you modify.

timeRef  = tout;
simlogRef = simlog;

Identify and Modify a Stiff Element
Examine the friction load in the model to determine if it incorporates discontinuities or has a small
time constant that causes numerical stiffness. Modify the element if it causes any rapidly changing
dynamics that require a small step size.
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1 Save the model as rts_stiffness_model in a writable folder on the MATLAB path.
2 Open the Friction Load block dialog box, a Rotational Friction block. The figure shows the

friction torque/relative velocity characteristic for the simple approximation of continuous friction
that the block models.

The breakaway torque is modeled as a function of the velocity threshold. When velocity is close
to zero, a small change in velocity yields a large change in torque. When velocity is not close to
zero, the torque change is more gradual. This block represents a stiff element. To make the
element less stiff, specify a higher value for the Breakaway friction velocity.

3 On the Parameters tab of the dialog box, change the Breakaway friction velocity from
0.059137 to 0.1 rad/s.

4 Simulate the modified model.

Analyze Results
To see how modifying the velocity threshold for the friction block affects the stiffness of the
component, compare the step sizes for the two simulations. The reference results meet expectations
based on empirical and theoretical data. You can assess the accuracy of the modified model by
comparing the speed results from the modified model to the results from the original version of the
model.
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1 Plot the step size for the reference results for modified model to the figure that contains the
reference data.

h2 = figure;
semilogy(timeRef(1:end-1),diff(timeRef),'-x',...
    'LineWidth',1,'MarkerSize',7)
hold on
semilogy(tout(1:end-1),diff(tout),'--x','Color','r',...
    'LineWidth',.1,'MarkerSize',5)
title('Solver Step Size')
xlabel('Time (s)')
ylabel('Step Size (s)')
h1Leg = legend({'Reference','Modified'},'Location','best');

The step size recovers more quickly from the event that occurs at simulation time t = 4 and 9
seconds. The simulation is less stiff at these times.

2 Extract the speed and time data from the logging nodes for the original and modified models.
speedRefNode = simlogRef.Measurements.Ideal_Rotational_Motion_Sensor.R.w;
speedRef = speedRefNode.series.values('rpm');
timeRef = speedRefNode.series.time;
speedModNode = simlog.Measurements.Ideal_Rotational_Motion_Sensor.R.w;
speedMod = speedModNode.series.values('rpm');
timeMod = speedModNode.series.time;

3 Plot and compare the results for the speed data for both simulations to make sure that the
modified model is accurate.
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h3 = figure;
plot(timeRef,speedRef)
h3;
hold on
plot(timeMod,speedMod,'r--')
title('Speed')    
xlabel('Time (s)')
ylabel('Speed (rpms)')
h3Leg = legend({'Reference','Modified'},'Location','best');

4 Zoom for a closer look at the inflection point at time (t) = ~5 seconds.

h3;
xStart = 0;
xEnd = 10;
yStart = -4000;
yEnd = 4000;
xZoomStart1 = 4.8;
xZoomEnd1 = 5.2;
yZoomStart1 = -400;
yZoomEnd1 = 150;
axis([xZoomStart1 xZoomEnd1 yZoomStart1 yZoomEnd1])
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At this zoom level, you can see that the simulation results for the modified model are accurate
enough to meet expectations based on empirical and theoretical data.

The Friction Load is now less numerically stiff. The figure of step size during simulation shows that
other elements in the model are also responsible for slow recovery times. Reduce more slow-recovery
steps by examining and modifying the other elements that cause stiffness.

You can also increase speed by modifying the model using methods in “Reduce Computation Costs”
on page 11-25 and “Reduce Zero Crossings” on page 11-55. If you can eliminate all small steps that
might generate an overrun, you can attempt to run a fixed-step simulation using the methods in
“Choose Step Size and Number of Iterations” on page 11-89.

See Also
Rotational Friction

See Also

Related Examples
• “Determine Step Size” on page 11-12
• “Estimate Computation Costs” on page 11-87
• “Reduce Computation Costs” on page 11-25
• “Reduce Fast Dynamics” on page 11-29
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• “Reduce Zero Crossings” on page 11-55
• “Determine System Stiffness” on page 11-82

More About
• “About Simulation Data Logging” on page 13-2
• “Events and Zero Crossings” on page 7-3
• “Log and Plot Simulation Data” on page 13-8
• “Model Preparation Objectives” on page 11-2
• “Real-Time Model Preparation Workflow” on page 11-4
• “Stiffness” on page 7-2
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Reduce Zero Crossings
In this section...
“Why Reduce Zero Crossings?” on page 11-55
“Obtain Reference Results and Plot Simulation Step Size” on page 11-55
“Identify and Modify Elements That Cause Zero Crossings” on page 11-58
“Analyze the Results of the Modified Model” on page 11-60

Why Reduce Zero Crossings?
Real-time deployment requires using a fixed-step solver. You typically use a variable-step solver for
desktop simulation. Variable-step solvers take smaller steps when they detect a zero-crossing event.
Smaller steps help to capture the dynamics that cause the zero crossing accurately. Fixed-step solvers
do not vary the size of the steps that they take. If your model relies heavily on detecting zero
crossings, you might need to specify a very small fixed-step size to capture the dynamics accurately. A
small step size can lead to overruns during real-time simulation. By reducing the number of zero
crossings, you can configure your solver to use a larger step size for both variable-step and fixed-step
deployment while generating results that are accurate enough.

Obtain Reference Results and Plot Simulation Step Size
Simulate your model to generate data that you can use to:

• Decide which model elements to change to reduce the number of zero-crossing events.
• Assess the accuracy of your modified model.

1 To open the model, at the MATLAB command prompt, enter:

model = 'ssc_pneumatic_rts_stiffness_redux'; 
open_system(model)
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2 Simulate the model:

sim(model)
3 Save the data to the workspace.

simlogRef = simlog;
timeRef = tout;

4 Plot the step size against the simulation time.

h1 = figure;
semilogy(timeRef(1:end-1),diff(timeRef),'-x')
title('Solver Step Size')
xlabel('Time (s)')
ylabel('Step Size (s)')

The simulation slows down repeatedly at the beginning of the simulation and at time t = ~1, 4, 5,
8, and 9 seconds.

5 Zoom to examine the data between time t = 0.8 and 1.03 seconds.

h1;
xStart = 0;
xEnd = 10;
yStart = 0;
yEnd = 10e0;
xZoomStart1 = 0.8;
xZoomEnd1 = 1.03;
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yZoomStart1 = 10e-20;
yZoomEnd1 = 10e-1;
axis([xZoomStart1 xZoomEnd1 yZoomStart1 yZoomEnd1])

The blue x markers in the figure indicate that the simulation has completed executing a step. The
circled markers indicate a very small step size and represent zero-crossing events. The step size
decreases to approximately 10e-15 seconds for each zero-crossing detection.

6 To obtain the reference results for motor speed, open the Measurements subsystem. Select the

Ideal Rotational Motion Sensor block, . With the block selected, use the
simscape.logging.findNode function to find and save the node that contains the data for W,
the signal for the angular velocity of the motor.

nRef = simscape.logging.findNode(simlogRef,gcbh)

nRef = 

  Node with properties:

            id: 'Ideal_Rotational_Motion_Sensor'
       savable: 1
    exportable: 0
           phi: [1×1 simscape.logging.Node]
             C: [1×1 simscape.logging.Node]
             R: [1×1 simscape.logging.Node]
             A: [1×1 simscape.logging.Node]
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             w: [1×1 simscape.logging.Node]
             t: [1×1 simscape.logging.Node]
             W: [1×1 simscape.logging.Node]

7 Use the simscape.logging.plot function to plot the reference results for W.

simscape.logging.plot(nRef.W);

Identify and Modify Elements That Cause Zero Crossings
Analyze the simulation data to determine the elements responsible for the zero crossings. Modify the
model to reduce the number of zero crossings that those elements cause.

1 Use the Simscape sscprintzcs function to print zero-crossing information for logged
simulation data.

sscprintzcs(simlogRef)

ssc_pneumatic_rts_stiffness_redux (42 signals, 50 crossings)
  +-Directional_5_way_valve (38 signals, 46 crossings)
  | +-Variable_Area_Orifice_1 (9 signals, 13 crossings)
  | +-Variable_Area_Orifice_2 (9 signals, 10 crossings)
  | +-Variable_Area_Orifice_3 (9 signals, 14 crossings)
  | +-Variable_Area_Orifice_4 (11 signals, 9 crossings)
  +-Pipe_1 (2 signals, 0 crossings)
  | +-Constant_Chamber (2 signals, 0 crossings)
  +-Pneumatic_Motor (2 signals, 4 crossings)
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The results show that the 50 detected zero crossings occur in the Directional 5-way valve block
(46 crossings) and the Pneumatic Motor block (4 crossings).

2 Use the sscexplore function to open the Simscape Results Explorer to interact with logged
simulation data.

sscexplore(simlogRef)
3 In the results tree, click Pneumatic Motor to see the results for the motor.

Most of the zero crossings occur between t = 0 and t =1 seconds, when the other signals in the
block are near zero. The few remaining zero crossings occur at approximately t = 5 seconds.

4 To identify the source code that triggers some of the zero crossings, select Directional 5-way
valve > Variable Area Orifice 2 > SimulationStatistics (ZeroCrossings) >  zc_1 - 8
crossings. Click the Pneumatic.Elements.VariableOrifice link that appears in the lower, left
corner of the window.
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The source code for the Pneumatic Motor block opens with the cursor at this code:

% Area - limit to be greater than Area0
AreaL = if Area<Area0, Area0 else Area end;

The conditional statement that is responsible for the zero crossings is related to the orifice area.
5 Decrease the number of zero crossings, by decreasing the maximum orifice area of the

Directional 5-way valve. Open the Directional 5-way valve block dialog box and specify 995 for
the Maximum orifice area (mm^2) parameter.

Analyze the Results of the Modified Model
Compare the results to the reference results to ensure the accuracy of your modified model. Confirm
that your modified model has fewer zero crossings.

1 Simulate the model and print the zero crossing data.

sim(model)
sscprintzcs(simlog)

ssc_pneumatic_rts_stiffness_redux (42 signals, 30 crossings)
  +-Directional_5_way_valve (38 signals, 26 crossings)
  | +-Variable_Area_Orifice_1 (9 signals, 7 crossings)
  | +-Variable_Area_Orifice_2 (9 signals, 6 crossings)
  | +-Variable_Area_Orifice_3 (9 signals, 8 crossings)
  | +-Variable_Area_Orifice_4 (11 signals, 5 crossings)
  +-Pipe_1 (2 signals, 0 crossings)
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  | +-Constant_Chamber (2 signals, 0 crossings)
  +-Pneumatic_Motor (2 signals, 4 crossings)

The overall number of zero crossings has decreased from 50 to 30.
2 Compare the results using the simscape.logging.plot function to plot the reference results

and the results from the modified model to a single plot:

simscape.logging.plot...
    ({simlogRef.Measurements.Ideal_Rotational_Motion_Sensor.W...
    simlog.Measurements.Ideal_Rotational_Motion_Sensor.W}, ...
    'names', {'Reference','Modified'})

The results look the same.
3 Zoom control for a closer look at the inflection point at t = ~ 5 seconds.

xStart = 0;
xEnd = 10;
yStart = -400;
yEnd = 400;
xZoomStart1 = 4.75;
xZoomEnd1 = 5.15;
yZoomStart1 = -20;
yZoomEnd1 = 30;
axis([xZoomStart1 xZoomEnd1 yZoomStart1 yZoomEnd1])
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At this zoom level, you can see a small difference in the results for the modified model. However
the simulation is accurate enough that the results meet expectations based on empirical and
theoretical data.

To improve simulation speed further before performing the real-time simulation workflow with
this model, try:

• Repeating the method shown in this example to identify and adjust other elements that cause
zero crossings that are responsible for the small steps

• Reducing any numerical stiffness that is responsible for the small steps

See Also
simscape.logging.findNode | simscape.logging.plotxy | sscexplore | sscprintzcs

See Also

Related Examples
• “Determine Step Size” on page 11-12
• “Estimate Computation Costs” on page 11-87
• “Reduce Computation Costs” on page 11-25
• “Reduce Fast Dynamics” on page 11-29
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• “Reduce Numerical Stiffness” on page 11-47
• “Log, Navigate, and Plot Simulation Data” on page 13-18

More About
• “About Simulation Data Logging” on page 13-2
• “About the Simscape Results Explorer” on page 13-21
• “Events and Zero Crossings” on page 7-3
• “Model Preparation Objectives” on page 11-2
• “Improving Speed and Accuracy” on page 11-8
• “Real-Time Model Preparation Workflow” on page 11-4
• “Using Conditional Expressions in Equations”
• “Zero-Crossing Detection” (Simulink)
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Partition a Model
You can make your model real-time capable by dividing the computational cost for simulation
between multiple processors via model partitioning. Computational cost is a measure of the number
and complexity of tasks that a central processing unit (CPU) performs per time step during a
simulation. A high computational cost can slow simulation execution speed and cause overruns when
you simulate in real time on a single CPU.

Typically, you can lower computational costs enough for real-time simulation on a single processor by
adjusting model fidelity and solver settings using methods described in “Real-Time Model Preparation
Workflow” on page 11-4. However, it is possible that there is no combination of model complexity and
solver settings that can make your model real-time capable on a single CPU on your target machine.
If your real-time simulation using a single CPU does not run to completion, or if the results from the
simulation are not acceptable, partition your model. You can run a partitioned model using a single,
multi-core target machine or multiple, single-core target machines.

This example shows you how to partition your model into two discrete subsystems, one that contains
the plant, and one that contains the controller, for parallel processing on individual real-time CPUs.

1 Open the model. At the MATLAB command prompt, enter

model = 'ssc_hydraulic_actuator_digital_control';
open_system(model)

In addition to signal routing and monitoring blocks, the model contains these blocks:

• Command Signal — A Signal Builder block that generates the input reference signal, r.
• Sum — A block that compares the reference signal, r, from the Command Signal block to the

output signal, y, from the Hydraulic Actuator to generate the error, x, that is r - y = x.
• Controller — A continuous Transfer Fcn block. The Numerator coefficients and

Denominator coefficients parameters for this block are specified by the variables num and
den.

• Transport Delay — A block that simulates time delay for a continuous input signal.

Note By default, Simulink Editor hides the automatic block names in model diagrams. To
display hidden block names for training purposes, clear the Hide Automatic Block Names
check box. For more information, see “Manage Block Names and Ports” (Simulink).

• Linearization I/O — A subsystem that linearizes the model about an operating point.
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• Hydraulic Actuator — A subsystem that contains the Simscape plant model.
2 Examine the variables in the workspace by clicking each variable in turn.

• The variable for sample time, ts = 0.001.
• The Numerator coefficients parameter, num = -0.5.
• The Denominator coefficients parameter, den = [0.001 1].
• The variable ClosedLoop = 1.

3 Simulate the model and open the Load Position scope to examine the results.

sim(model)
open_system([model, '/Load Position'])

The output from the hydraulic actuator matches the command signal.
4 Eliminate items that add to the computational cost but which do not affect the results of real-time

simulation. In the example model, because the closed loop gain is 1, such items include the
Linearization I/O points, In1, and In2 blocks. Delete the three blocks and the lines that
interconnect them.

5 Configure the model for visualization.

a Delete the Mux block.
b Delete the Goto and From blocks that are named Cmd.
c Connect the Load Position Scope block to the output signal from the Hydraulic Actuator.
d Add a second Scope block.
e Connect the new Scope block to the unconnected connection line from the Command Signal.
f Change the name of the new Scope block to Reference.

6 Replace the Transport Delay block with a Unit Delay block.

a Delete the Transport Delay block and the open ended connection line that is connected to
the outport of the block.
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b Add the Unit Delay block from the Simulink Discrete library and connect it to the input port
of the Hydraulic Actuator Subsystem.

c For the Sample time (-1 for inherited) parameter of the Unit Delay block, specify ts.
7 Replace the Controller block with a Discrete Transfer Fcn block from the Simulink Discrete

library.

a Delete the Controller block.
b Click in the model window and enter discrete transfer fcn. When the dropdown menu

that contains the block appears, click Discrete Transfer Fcn.
c Connect the new block to the open-ended connection line from the Sum block.
d Connect the outport of the new block to the inport of the Unit Delay block.
e Specify parameters for the discrete controller using a Tustin transformation of the original,

continuous transfer function.

i At the MATLAB command line, save new variables based on the original coefficients:

k = num;
alpha = den(1,1);

ii For the Discrete Transfer Fcn block Numerator parameter, specify [k*ts k*ts].
iii For the Denominator parameter, specify [2*alpha+ts ts-2*alpha].
iv For the Sample time (-1 for inherited) parameter, specify ts.

8 Provide digital sampling for continuous time measurements using Zero-Order Hold blocks.

a Add Zero-Order Hold blocks to both signals that are input to the Sum block.
b For the Sample time (-1 for inherited) parameter of both Zero-Order Hold blocks, specify

ts.
9 Connect the blocks as shown in the figure.

10 Simulate the model and open the Load Position scope to see how the modifications affect the
results.

sim(model)
open_system([model, '/Load Position'])
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The output from the hydraulic actuator matches the original results.
11 Configure the solvers.

a To configure the global solver, open the model configuration parameters, and in the Solver
pane:

• Set the solver Type to Fixed-step.
• Set the Solver to discrete (no continuous states).
• Specify ts for the Fixed-step size (fundamental sample time) parameter.
• Click OK.

b To configure the local solver, open the Hydraulic Actuator subsystem and update these
parameters for the Solver Configuration block:

• Select the option to Use local solver.
• Specify ts for the Sample time.
• Select the option to Use fixed-cost runtime consistency iterations.
• Click OK.

12 Partition the model into two subsystems:

a Create a subsystem that contains these blocks:

• Command Signal
• Reference
• Zero-Order Hold
• Sum
• Discrete Transfer Fcn
• Unit Delay

b Label the subsystem Controller Subsystem.
c Open the Controller Subsystem.
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d Rename the Out1 Outport block as u.
e Rename the In1 Inport block as y.
f Navigate to the top model.
g Create a second subsystem that contains these blocks:

• Hydraulic Actuator
• Zero-Order Hold1
• Load Position

h Label the subsystem Plant Subsystem.
i Open the Plant Subsystem.
j Rename the Out1 Outport block as u_plant.
k Rename the In1 Inport block as y_plant.
l To see the partitioned subsystems, navigate to the top model.

This model is partitioned for concurrent execution. To learn how to add tasks, and map individual
tasks to partitions, see “Partition Your Model Using Explicit Partitioning” (Simulink).
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See Also
Discrete Transfer Fcn | Unit Delay | Zero-Order Hold

Related Examples
• “Determine Step Size” on page 11-12
• “Estimate Computation Costs” on page 11-87
• “Reduce Computation Costs” on page 11-25

More About
• “Real-Time Model Preparation Workflow” on page 11-4
• “Model Preparation Objectives” on page 11-2
• “Implicit and Explicit Partitioning of Models” (Simulink)
• “Multicore Programming with Simulink” (Simulink)

External Websites
• Concurrent Execution with Simulink Real-Time and Multicore Target Hardware
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Manage Model Variants
Variant blocks allow you to create a single model that caters to multiple variant requirements. Such
models have a fixed common structure and a finite set of variable components. The variable
components are activated depending on the variant choice that you select. Thus, the resultant active
model is a combination of the fixed structure and the variable components based on the variant
choice. The use of variant blocks in a model helps in reusability of the model for different conditional
expressions called variant choices. For more information and examples, see “Variant Subsystems”
(Simulink).

However, you cannot simulate on real-time target hardware using code that does not specify default
variant choices. Before you generate code for real-time simulation, use the Variant Manager to
identify variant blocks in your model and to manage the variation points that are modeled using those
blocks. To learn how to use the variant manager, see “Variant Manager Overview” (Simulink).

Limitations
Simscape does not support conditional compilation for model variants.

See Also
Variant Subsystem

More About
• “Prepare Variant-Containing Model for Code Generation” (Simulink)
• “Variant Manager Overview” (Simulink)
• “Variant Subsystems” (Simulink)
• “What Are Variants and When to Use Them” (Simulink)
• “Working with Variant Choices” (Simulink)
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Fixed-Cost Simulation for Real-Time Viability
The step size and number of iterations that you specify affect the computational cost of your real-time
simulation. As you decrease the step size or increase the number of iterations, the results become
more accurate, but the simulation costs more so it can take longer to simulate. Simulation overrun
occurs if the step size is too small or if there are too many iterations for the solver to calculate a
solution in a single real-time computational frame.

Limit the computational cost by specifying the solver step size and, for implicit solvers, the number of
iterations for the Simulink global solver and for each Simscape local solver in your model.

For best results when specifying the step size of a fixed-step solver for real-time simulation:

• Specify a sample time that results in time steps that are no greater than the maximum step size.
• Specify the sample time for each local solver independently and as an integer multiple of the

sample time that you specify for the global solver.
• Choose a step size that is larger than the minimum step size for required speed and smaller than

the maximum step size for required accuracy.

To configure the number of iterations for real-time simulation with a fixed-step solver:

• For local solvers, specify the number of nonlinear iterations for each independently configured
Solver Configuration block.

• For global solvers ode14x and ode1be, specify the number of Newton’s iterations.

To obtain accurate results, for both local and global solvers start with two or three iterations and
increase as required.

See Also

Related Examples
• “Choose Step Size and Number of Iterations” on page 11-89

More About
• “Simulating with Fixed Cost” on page 7-19
• “Simulating with Fixed Time Step — Local and Global Fixed-Step Solvers” on page 7-18
• “Solvers for Real-Time Simulation” on page 11-76
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Real-Time Simulation Workflow
In this section...
“Make Your Model Real-Time Viable” on page 11-74
“Insufficient Computational Capability for Real-Time Viability” on page 11-75

The figure shows the real-time simulation workflow. The connectors are exit points for returning to
the real-time model preparation workflow.

The figure shows the real-time model preparation workflow. The connector is an entry point for
returning to the real-time model preparation workflow from other real-time workflows (for example,
the real-time simulation workflow or the hardware-in-the-loop simulation workflow).
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Before performing this workflow, prepare your model for real-time simulation using the “Real-Time
Model Preparation Workflow” on page 11-4. The real-time model preparation workflow shows you
how to obtain reference results, determine the maximum step size, and modify your model to
simulate quickly and produce accurate results.

Use the real-time simulation workflow to increase the likelihood that your model is real-time capable.
Your model is real-time capable if it meets both of these criteria when you simulate it on your real-
time computer:

• The results match your expectations, based on empirical data or theoretical models.
• The model simulates without incurring an overrun.

The real-time simulation workflow uses bounded, that is fixed-step, fixed-cost, simulation. Fixed-step,
fixed-cost simulation sets an upper boundary on computational cost by limiting both the step size and
the number of iterations that the solver uses.
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Make Your Model Real-Time Viable
Perform Fixed-Step, Fixed-Cost Simulation

Run your model on a desktop computer using fixed-step, fixed-cost configurations for the global
solver and local solvers. For more information on specifying fixed-step, fixed-cost solver
configurations for real-time simulation, see “Choose Step Size and Number of Iterations” on page 11-
89 and “Fixed-Cost Simulation for Real-Time Viability” on page 11-71.

Evaluate Model Accuracy

Compare the results from the simulation on the target computer to your reference results. Are the
reference and modified model results the same? If not, are they similar enough that the empirical or
theoretical data also supports the results from the simulation of the modified model? Is the modified
model representing the phenomena that you want it to measure? Is it representing those phenomena
correctly? If you plan on using your model to test your controller design, is the model accurate
enough to produce results that you can rely on for system qualification? The answers to these
questions help you to decide if your real-time results are accurate enough.

Improve Accuracy by Adjusting Solver Settings

If your fixed-step, fixed-cost simulation results do not match your reference results, try to improve
accuracy by adjusting solver configurations. Increasing the number of iterations or decreasing the
step size can improve accuracy.

For an implicit global solver (ode14x, ode1be), increase the number of Newton’s iterations. For a
Backward Euler or Trapezoidal Rule local solver, increase the number of nonlinear iterations.

For the global solver, and for any local solvers, decrease the step size. Configure the step size for
each local solver as an integer multiple of the step size you specify for the global solver.

Return to the Real-Time Model Preparation Workflow

If changing solver configurations does not improve or speed enough, try to make your model real-
time capable by returning to the real-time model preparation workflow.

Adjust the fidelity or scope of your model, and then step through the other processes and decisions in
the real-time model preparation workflow. Iterate on adjusting, simulating, and analyzing your model
until it is fast and accurate enough for you to attempt the real-time simulation workflow again. For
information, see “Real-Time Model Preparation Workflow” on page 11-4.

Evaluate Overrun Risk

In terms of speed, the only method for definitively determining that your model is real-time capable is
to test for overruns during simulation on your target hardware. You can, however, use fixed-step,
fixed-cost simulation to estimate the likelihood that your solver executes quickly enough for real-time
simulation. For information on estimating simulation time, see “Estimate Computation Costs” on page
11-87.

Improve Simulation Speed by Adjusting Solver Settings

If your computational cost estimate indicates that your model executes too slowly to avoid an overrun
on a real-time target machine, try to increase simulation speed by adjusting solver configurations.
Decreasing the number of iterations or increasing the step size can improve accuracy.
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For an implicit global solver (ode14x, ode1be), decrease the number of Newton’s iterations. For
either a Backward Euler or Trapezoidal Rule local solver, decrease the number of nonlinear
iterations.

For the global solver, and for any local solvers, increase the step size. Configure the step size for each
local solver as an integer multiple of the step size you specify for the global solver.

Model Is Real-Time Viable

When fixed-step, fixed-cost simulation results indicate that your model is likely real-time capable, you
can attempt real-time simulation on the target hardware. For information on how you can use real-
time simulation to test your controller hardware, see “What Is Hardware-In-The-Loop Simulation?” on
page 11-103.

Return to the Real-Time Simulation Workflow

The connector is an entry point for returning to the real-time simulation workflow from another
workflow (for example, the hardware-in-the-loop simulation workflow).

Insufficient Computational Capability for Real-Time Viability
It is possible that your real-time target machine lacks the computational capability for running your
model in real time. If, after multiple iterations of the workflow, there is no combination of model
complexity and solver settings that makes your model real-time viable, consider these options for
increasing processing power:

• “Upgrading Target Hardware” on page 11-10
• “Simulating Parts of the System in Parallel” on page 11-10

See Also

Related Examples
• “Choose Step Size and Number of Iterations” on page 11-89
• “Determine System Stiffness” on page 11-82
• “Estimate Computation Costs” on page 11-87

More About
• “Fixed-Cost Simulation for Real-Time Viability” on page 11-71
• “Hardware-In-The-Loop Simulation Workflow” on page 11-106
• “Improving Speed and Accuracy” on page 11-8
• “Real-Time Model Preparation Workflow” on page 11-4
• “Solvers for Real-Time Simulation” on page 11-76
• “What Is Hardware-In-The-Loop Simulation?” on page 11-103
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Solvers for Real-Time Simulation
In this section...
“Choosing Between Discrete and Continuous Solvers” on page 11-76
“Computational Cost for Continuous Solvers” on page 11-77
“How Numerical Stiffness Affects Solver Choice” on page 11-77
“Using Simscape Local Fixed-Step Solvers” on page 11-78

To run your model on a real-time target machine, configure your model for fixed-step, fixed-cost
simulation. The type of fixed-step solver, step size, and number of iterations that you specify affect the
speed and accuracy of your real-time simulation.

Each distinct Simscape physical network in your model has its own Simscape Solver Configuration
block. You can set the solver choice differently for each physical network. If you do not check the
local solver option for a physical network, then that network uses the Simulink global solver that you
specify.

When choosing a fixed-step solver type, the main factors to consider for each network in your model
are:

• Whether the network is discrete or continuous
• The computational cost of the solver

• The numerical stiffness of the network

The following table summarizes the types of fixed-step solvers in the Simulink and Simscape libraries.

Realm Type Numerical Method Solver
Simulink global
solver

Continuous Explicit ode1 (Euler's method)
ode2 (Huen’s method)
ode3 (Bogacki-Shampine)
ode4 (Fourth-Order Runge-Kutta, RK4)
ode5 (Dormand-Prince,RK5)
ode8 (Dormand-Prince, RK8)

Implicit ode14x (extrapolation)
ode1be (Backward Euler)

Discrete Not applicable Discrete (no continuous states)
Simscape local
network

Continuous Implicit Backward Euler
Trapezoidal Rule
Partitioning

Choosing Between Discrete and Continuous Solvers
To perform real-time simulation on a discrete model, for example, for the design of a digital
controller, specify the Simulink global discrete solver. If the network that contains the controller has
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any continuous states, discretize the network. For an example that shows how to discretize the
controller for the hydraulic actuator, see “Hydraulic Actuator Configured for HIL Testing”.

Note A physical network using a local solver appears to the global Simulink solver as if it has
discrete states.

If your controller model does contain continuous states, for example, if you are modeling an analog
controller, use a Simulink global continuous solver.

Computational Cost for Continuous Solvers
Computation cost is the number of calculations per time step that a processor performs. Real-time
readiness varies inversely with computation cost. The lower the computational cost of a model is, the
more likely it is that a real-time simulation of the model proceeds without overruns and generates
sufficiently accurate results.

The figure shows the normalized computational cost of most global and local continuous fixed-step
solvers. The data comes from a series of fixed-step, fixed-cost simulations using the different solver
types. The model is nonlinear and contains one physical network. Although the solver type varies, the
simulations use the same step size and a similar setting for the total number of solver iterations. They
do so because the step size and number of iterations also affect the computational cost of a
simulation.

For a given accuracy, explicit global solvers generally have a lower computational cost than implicit
global solvers. Local (Simscape only) solvers are less costly than global solvers.

How Numerical Stiffness Affects Solver Choice
To determine whether to use an explicit or implicit fixed-step solver for simulating your model in real
time, consider these two factors:
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• The numerical stiffness of the system
• The computational cost of the solver

To determine if your system is stiff or nonstiff, simulate with different fixed-step solver configurations
and compare results from each to the reference results. If the step size is too large, stiff systems can
produce oscillations because they contain dynamics that vary both quickly and slowly. For more
information, see “Stiffness of System” (Simulink) and “Determine System Stiffness” on page 11-82.

Explicit solvers are faster than implicit solvers, but they provide less accurate solutions for
numerically stiff systems because they tend to damp out oscillations. Implicit solvers can better
capture the oscillations that occur in stiff systems because they are more robust than explicit solvers.
However, implicit solvers deliver better accuracy at the expense of speed.

If your controller model is continuous and numerically stiff, use the implicit solver ode14x. If ode14x
does not allow your model to simulate fast enough for real-time simulation, at the expense of
accuracy, you can:

• Improve simulation speed by increasing the step size or decreasing the number of iterations.
• Use the ode1be Backward Euler solver.
• Reduce the stiffness of your model and specify an explicit solver instead of ode14x.

To determine the explicit solver that is the best choice for your less stiff or numerically nonstiff,
continuous controller model, perform bounded simulation using each of the explicit continuous
solvers. Configure each solver to use the same step size and a similar number of solver iterations.
Compare the simulation results and choose the solver that provides the best combination of accuracy
and speed.

To increase the accuracy of the results that your explicit solver provides, at the expense of speed,
decrease the step size or increase the number of iterations. For more information on configuring your
model for fixed-step, fixed-cost simulation, and evaluating the results of bounded simulation, see
“Choose Step Size and Number of Iterations” on page 11-89.

Using Simscape Local Fixed-Step Solvers
You can usually further minimize computational cost by using a Simscape local solver for each
independent physical network in your model. For similar levels of accuracy, local solvers have a lower
computational cost than Simulink global solvers.

Simscape allows you to specify a different solver configuration for each independent physical system
(subsystem) in your model. You can use an implicit fixed-step solver on the stiff local networks and an
explicit fixed-step solver on the nonstiff local networks. Optimizing solvers for each network
minimizes the overall number of computations done per time step and makes it more likely that the
model can run in real time without generating an overrun.

Choose between three Simscape fixed-step solvers for real-time simulation.

• Backward Euler
• Trapezoidal Rule
• Partitioning

The Backward Euler solver is more robust, and therefore more stable than the Trapezoidal Rule
solver. It tends to damp oscillations. The Trapezoidal Rule solver is more accurate, but less stable
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than the Backward Euler solver. It tends to capture oscillations, like the sinusoid AC waveforms that
are common to electrical systems. The Partitioning solver is also more robust than the Trapezoidal
Rule solver, however, it cannot simulate certain models. For more information, see “Increase
Simulation Speed Using the Partitioning Solver” on page 11-19. Regardless of the local solver you
choose, the simulation uses the Backward Euler whenever numerical stability is at risk:

• At the start of simulation.
• After an instantaneous change, when the corresponding block undergoes an internal discrete

change.

See Also
Solver Configuration

Related Examples
• “Determine System Stiffness” on page 11-82
• “Reduce Numerical Stiffness” on page 11-47
• “Choose Step Size and Number of Iterations” on page 11-89

More About
• “Fixed-Cost Simulation for Real-Time Viability” on page 11-71
• “Making Optimal Solver Choices for Physical Simulation” on page 7-18
• “Compare Solvers” (Simulink)
• “Fixed Step Solvers in Simulink” (Simulink)
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Troubleshooting Real-Time Simulation Issues

In this section...
“Avoid Computer Overloads and Unacceptable Simulation Results” on page 11-80
“Optimize Real-Time Application Execution Using Simscape Checks” on page 11-80

Avoid Computer Overloads and Unacceptable Simulation Results
A model is not real-time capable if, during simulation on real-time target hardware, it overloads the
CPU or produces results that do not match your theoretical calculations or experimental data. To
make your model real-time capable, use the workflows in “Real-Time Model Preparation Workflow” on
page 11-4 and “Real-Time Simulation Workflow” on page 11-72. For examples that show how to:

• Find step-size limits and configure solvers for real-time simulation, see “Determine Step Size” on
page 11-12 and “Choose Step Size and Number of Iterations” on page 11-89.

• Analyze and modify the fidelity of your model for real-time simulation, see “Estimate Computation
Costs” on page 11-87, “Reduce Computation Costs” on page 11-25, “Determine System Stiffness”
on page 11-82, “Reduce Numerical Stiffness” on page 11-47, and “Reduce Zero Crossings” on
page 11-55.

If you cannot find a combination of solver settings and model fidelity that makes your model real-time
capable, consider one of these options:

• Execute your real-time application on a faster target machine.
• Configure the networks in your model so that they are independent of each other, and then

partition them for parallel simulation on individual target computers. For information, see
“Multicore Programming with Simulink” (Simulink)

Optimize Real-Time Application Execution Using Simscape Checks
If you have a Simulink Real-Time™ license, you can optimize your model for real-time execution using
the Execute real-time application activity mode in Performance Advisor. This mode includes
several checks specific to physical models. Use Simulink Performance Advisor to identify:

• Simscape Solver Configuration blocks with settings that are suboptimal for real-time simulation.
For optimal results, Solver Configuration blocks should have the following options selected: Use
local solver and Use fixed-cost runtime consistency iterations.

• Simscape blocks that have a Fluid dynamic compressibility option that is suboptimal for real-
time simulation. For optimal results, the Fluid dynamic compressibility option should be set
to Off.

To access the checks, in the Performance Advisor window, under Activity, select Execute real-
time application. In the left pane, expand the Real-Time folder, and then the Simscape checks
folder. Run the Simscape checks.

For more information, see “Use Performance Advisor to Improve Simulation Efficiency” (Simulink).
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See Also

More About
• “Model Preparation Objectives” on page 11-2
• “Real-Time Model Preparation Workflow” on page 11-4
• “Real-Time Simulation Workflow” on page 11-72
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Determine System Stiffness
In this section...
“Obtain Reference Results” on page 11-82
“Simulate with an Implicit Fixed-Step Solver” on page 11-83
“Simulate with an Explicit Fixed-Step Solver” on page 11-84
“Analyze the Results” on page 11-85

Determining the numerical stiffness of your model helps you to decide between using an implicit or
an explicit fixed-step solver for real-time simulation. To determine numerical stiffness, first use the
real-time model preparation workflow to optimize the speed and accuracy of your model. Then,
simulate your model using both explicit and implicit fixed-step solvers. Compare the simulation
results to see how the solvers behave. If your model is numerically stiff, an explicit solver typically
exhibits small oscillations around the desired solution.

Implicit solvers are more robust than explicit solvers, however, explicit solvers are faster. For robust
results when performing real-time simulation with numerically stiff model, use an implicit fixed-step
solver. If your model is not stiff, use an explicit solver to maximize simulation speed.

In this example, you obtain reference results by simulating a pneumatic model with a variable-step
solver. You also configure and simulate the model using an implicit and then an explicit fixed-step
global Simulink solver. Then you compare the results from all three simulations to determine if the
pneumatic model is numerically stiff.

Obtain Reference Results
1 To open the model, at the MATLAB command prompt, enter:

ssc_pneumatic_rts_reference
2 Save the model as stiffness_model to a writable folder on the MATLAB path.
3 Simulate the model.
4 Assign the simulation results to new variables.

yRef = yout;
tRef = tout;

5 Plot the results of the variable-step simulation.

h1 = figure;
plot(tRef,yRef)
h1Leg = legend({'Reference'});
title('Speed')
xlabel('Time (s)')
ylabel('Speed (rpm)')
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Simulate with an Implicit Fixed-Step Solver
1 Configure the model for fixed-step simulation with implicit solver ode14x. In the configuration

parameters Solver pane, set:

• Type to Fixed-step
• Solver to ode14x (extrapolation)
• Under Additional options, Fixed-step size (fundamental sample time) to 1e-3
• Number of Newton's iterations to 1.

Click Apply.
2 Simulate the model.
3 Assign the simulation results to new variables.

yOde14x = yout;
tOde14x = tout;

4 Use the stairs function to plot the results of the implicit fixed-step simulation so you can see
how the solver behaves when it executes each step in the simulation.

h1
hold on
stairs(tOde14x,yOde14x,'g--')
h1Leg = legend({'Reference','Implicit Solver'});
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The results appear the same.

Simulate with an Explicit Fixed-Step Solver
1 Configure the model for fixed-step simulation with explicit fixed-step solver ode5. In the

configuration parameters Solver pane, set:

• Type to Fixed-step
• Solver to ode5 (Dormand-Prince)

Click OK.
2 Filter the input signal to provide the required input derivative for the explicit solver. In the PS-S

Simulink Converter block dialog box, on the Input Handling tab, set Filtering and derivatives
to Filter Input. Click OK.

3 Simulate the model.
4 Assign the simulation results to new variables.

yOde5 = yout;
tOde5 = tout;

5 Use the stairs function to plot the results of the explicit fixed-step simulation.

h1
hold on
stairs(tOde5,yOde5,'r-')
h1Leg = legend({'Reference','Implicit Solver','Explicit Solver'});
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The results differ at the inflection points.

Analyze the Results
1 To see the results more closely, zoom to the inflection point just after time t = ~ 1 second.
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The implicit solver follows a path that is similar to the path that the variable-step solver takes
when generating the reference results. The oscillations that the explicit solver exhibits indicate
that the model is numerically stiff. The oscillations also indicate that the explicit solver is more
computationally costly than the implicit solver for simulating the stiff model. Use a global or local
implicit fixed-step solver for real-time simulation with numerically stiff models to avoid
unnecessary computational cost.

See Also
stairs

Related Examples
• “Reduce Numerical Stiffness” on page 11-47
• “Determine Step Size” on page 11-12

More About
• “Filtering Input Signals and Providing Time Derivatives” on page 7-22
• “Real-Time Model Preparation Workflow” on page 11-4
• “Solvers for Real-Time Simulation” on page 11-76
• “Stiffness” on page 7-2
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Estimate Computation Costs
Estimating computational cost helps you to determine if your model is likely to cause an overrun
when you simulate it on your real-time processor. Computational cost is the execution time per time
step during simulation. To estimate the time that it takes for your model to execute on real-time
hardware, estimate the simulation execution-time budget for your real-time target machine.

To estimate the simulation execution-time, first, measure the execution time of desktop simulation for
a particular model. Then determine the average execution time per time step on the real-time target
machine for the same model. Knowing how these execution times compare for one model means that
you can estimate execution time on the real-time target machine from desktop simulation execution
time when you test other models. Having an estimate for the execution-time budget helps you to
choose a feasible combination of solver settings for fixed-step, fixed-cost simulation.

During each time step, the real-time target machine must perform the procedures that the figure
shows.

The equation for determining the minimum step size to specify for the fixed-step solver to avoid
simulation overrun is

Tsmin = TETmax + HLTmax,

where

• TET is the task execution time. Task execution time involves calculating the simulation results for
the time step, processing inputs from and writing outputs to the development computer, and
performing general computing tasks such as buffering data and accessing memory.

• HLT is the hardware latency time. Hardware latency time includes scheduling, interrupt, and
input/output (I/O) latency.

• Tsmin is the minimum step size.
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If the time that it takes for the target machine to execute the simulation and handle latency processes
is less than the specified time step, the processor remains idle during the remainder of the step. That
is,

Ts = TETmax + HLTmax + IT,

where

• Ts is the step size that you specify for the fixed-step solver.
• IT is the idle time.

This equation can be rearranged as:

TETmax = Ts− HLTmax− IT,

The task execution, hardware latency, and idle times vary, but you can implement a safety margin by
specifying the idle time in the budget calculation as a function of the step size for the fixed-step
solver. For example, if you specify a step size of 1e-5 for the solver, and you want a 20% safety
margin, then IT = (0.2)*(1e-5).

Therefore, the amount of time available for simulation execution can be calculated as follows:

TETmax = Ts− HLTmax− SMT * Ts ,

where

• SMT is the desired safety margin, specified as a percent.

See Also

Related Examples
• “Reduce Computation Costs” on page 11-25

More About
• “Fixed-Cost Simulation for Real-Time Viability” on page 11-71
• “Simulation Phases in Dynamic Systems” (Simulink)
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Choose Step Size and Number of Iterations
In this section...
“Obtain Reference Results” on page 11-89
“Determine Maximum Step Size for Accurate Results” on page 11-92
“Parameterize Global and Local Solver Settings” on page 11-94
“Perform Fixed-Step, Fixed-Cost Simulation” on page 11-94
“Adjust Solver Settings to Improve Accuracy” on page 11-97

The step size and number of iterations that you specify for solvers in your model affect the speed and
accuracy of your real-time simulation. If you decrease the step size or increase the number of
iterations, the results are more accurate, but the simulation runs slower. If you increase the step size
or decrease the number of iterations, the simulation runs faster, but the results are less accurate.

To optimize your model for simulation on a real-time target machine, specify a combination of step
size (Ts) and number of iterations (N) that provides acceptable accuracy and the speed to avoid an
overrun. As with solver type, you can specify different combinations of Ts and N values for the
Simulink global solver and for each independent Simscape network in your model.

This workflow helps you to select the step size and number of iterations for real-time simulation:

• Obtain reference results by performing variable-step simulation on a model of a hydraulic
actuator.

• Use a modified version of the model to determine the maximum step size to use to achieve
accurate enough results from a fixed-step, fixed-cost simulation. Fixed-step, fixed-cost simulation
is required for real-time simulation.

• Specify global and local fixed-step, fixed-cost solver settings for the modified version of the model.
• Perform a timed simulation with the modified model and evaluate the accuracy of the results.
• Adjust the step size and number of iterations to find solver settings that provide the required

speed and accuracy for real-time simulation.

Obtain Reference Results
To obtain reference results, simulate the original version of the hydraulic actuator model.

1 To open the hydraulic actuator model, at the MATLAB command prompt, enter:

model = 'ssc_hydraulic_actuator_digital_control';
open_system(model)

 Choose Step Size and Number of Iterations

11-89



2 The model is configured to limit data points. To configure the model to log all dat points, open the
model configuration parameters, and in the Simscape pane, clear the Limit data points check
box.

3 Simulate the model.

sim(model)
4 Extract the data for pressure and simulation-step time from the logged Simscape node.

simlogRef = simlog_ssc_hydraulic_actuator_digital_control;
pRefNode = simlogRef.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_A.A.p;
pRef = pRefNode.series.values('Pa');
tRef = pRefNode.series.time;

5 Plot the step size.

h1 = figure;
semilogy(tRef(1:end-1),diff(tRef),'-x')
title('Solver Step Size')
xlabel('Time (s)')
ylabel('Step Size (s)')
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The maximum step size (Tsmax) for obtaining accurate real-time results for the original model is
approximately 1e-2 seconds. For information on determining Tsmax, see “Determine Step Size” on
page 11-12.

6 Plot the simulation results.

h2 = figure;
plot(tRef,pRef, 'b-')
h2Legend1 = legend({'Reference'},'Location','southoutside');
title('Cylinder Pressure')
xlabel('Time (s)')
ylabel('Pressure (Pa)')
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Determine Maximum Step Size for Accurate Results
In a modified version of the hydraulic actuator model, you can change the value of Tsmax, the
maximum step size for achieving accurate real-time simulation results.

1 Open the modified hydraulic actuator model.

ssc_hydraulic_actuator_HIL

This version of the hydraulic actuator contains a discretized, partitioned controller. The local
solver for the hydraulic actuator subsystem is enabled for fixed-step, fixed-cost simulation. The
step size is parameterized (ts) so that you can make solver adjustments that decrease the
likelihood of generating an overrun. For an example that shows how to discretize the controller
for the hydraulic actuator, see “Hydraulic Actuator Configured for HIL Testing”.

11 Real-Time Simulation

11-92



2 To determine the maximum step size to use for achieving accurate real-time simulation results,
you simulate with a global, variable-step solver. To configure the modified model for variable-step
simulation using the global solver, disable the local solver configuration. In the Hydraulic
Actuator subsystem, in the Solver Configuration block dialog box, clear the Use local solver
check box.

3 Simulate the model.
4 Extract the data for pressure and time from the logged Simscape node.

simlog0 = simlog_ssc_hydraulic_actuator_HIL;
pNodeSim0 = simlog0.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_A.A.p;
pSim0 = pNodeSim0.series.values('Pa');
tSim0 = pNodeSim0.series.time;

5 Plot the step size to the figure that contains the step-size data for the original model.

figure(h1)
hold on
semilogy(tSim0(1:end-1),diff(tSim0),'--x', 'Color','r',...
    'LineWidth',.1,'MarkerSize',5)
title('Solver Step Size')
xlabel('Time (s)')
ylabel('Step Size (s)')
h1Legend1 = legend({'Reference','Modified'},...
    'Location','southoutside');

For the discretized model, Tsmax is between 1e-2 and 1e-3 seconds.
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Parameterize Global and Local Solver Settings
To reduce the number of steps for finding the optimal real-time-simulation solver settings,
parameterize the solver configuration with workspace variables. In the Hydraulic Actuator Discrete
Model, the step size for the local solver configuration is specified as the workspace variable ts. For
this example, you also use workspace variables to parameterize the global step size (tsG) and the
local number of nonlinear iterations (N).

1 For the modified model, in the model configuration parameters dialog box, specify these settings:

Pane Parameter Value Purpose
Solver Type Fixed-step Configure the global

solver of the modified
model for fixed-step
simulation.

Solver discrete (no
continuous states)

Configure the global
solver to match the state
of the controller.

Additional options
> Fixed-step size
(fundamental sample
time)

tsG Parameterize the global
step size.

Simscape Limit data points Clear the check box. As you decrease the
solver step size, the
number of data points
that the simulation
generates increases.
Clear the option to
ensure that you collect
all the data that you
need for evaluating
simulation accuracy.

2 Configure the local solver for fixed-step simulation. In the Hydraulic Actuator subsystem, in the
Solver Configuration block dialog box, select Use local solver.

3 To parameterize the cost of the simulation, set Nonlinear iterations to N.

Perform Fixed-Step, Fixed-Cost Simulation
You can determine if your solver settings are appropriate for real-time simulation by simulating the
model and then evaluating the accuracy of the results and the speed of the simulation. To evaluate
accuracy, compare the results to the reference results and to the results of other fixed-step, fixed-cost
simulations. To evaluate simulation speed, compare the elapsed time to the specified simulation time
and to the simulation execution budget. If the speed or accuracy is not acceptable, adjust the step
size and number of iterations to make your model real-time capable.

The simulation execution-time budget for this example is four seconds. For information on
determining the execution-time budget for your model, see “Estimate Computation Costs” on page
11-87.
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1 For the first simulation, specify both the global and local step size as the largest possible value of
Tsmax from the step plot. Specify a relatively large value for the step size for both solvers and
three for the number of nonlinear iterations for the local solver.

ts = 1e-2;
tsG = 1e-2;
N = 3;

2 Perform a timed fixed-step, fixed-cost simulation.

tic; sim('ssc_hydraulic_actuator_HIL'); tSim1 = toc;
time1 = max(tSim1);

3 Extract the data for pressure and simulation time from the logged Simscape node.

simlog1 = simlog_ssc_hydraulic_actuator_HIL;
pNodeSim1 = simlog1.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_A.A.p;
pSim1 = pNodeSim1.series.values('Pa');
tSim1 = pNodeSim1.series.time;

4 Plot the simulation results to the figure that contains the reference results. Write the elapsed
time to the figure legend.

figure(h2)
hold on
plot(tSim1, pSim1, 'g--')
delete(h2Legend1)
configSim1L = ['Local: Ts= ',num2str(ts),'s, N= ',num2str(N),'.'];
configSim1G = [' Global: Ts= ',num2str(tsG),'s.'];
timeSim1T = ['Time=',num2str(time1)]; 
cfgSim1 = [configSim1L,configSim1G,timeSim1T];
h2Legend2 = legend({'Reference',num2str(cfgSim1)},...
    'Location','southoutside');
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The elapsed time varies because it depends on the immediate computational capacity of the
computer that runs the simulation. The elapsed times in the legend are from simulation on a 3.6-
GHz Intel® CPU with a 16-GB memory. Your legend contains the elapsed time for the simulation
on your computer.

The simulation took less time to complete than the specified simulation time (10 s) so it runs
faster than real time on the development computer. The elapsed time is also less than the
simulation execution-time budget for this example (four seconds). Therefore, the specified solver
configuration provides an acceptable safety margin for real-time simulation on the target
machine that provided the budget data.

5 Zoom to an inflection point to evaluate the accuracy of the results.

figure(h2)
xStart = 0;
xEnd = 10;
yStart = 0;
yEnd = 3.5e6;
xZoomStart = 0.3;
xZoomEnd = 0.6;
yZoomStart = 2.6e6;
yZoomEnd = 3.5e6;
axis([xZoomStart xZoomEnd yZoomStart yZoomEnd])
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Theoretical and empirical data support the reference results. The accuracy of the simulation
results is not acceptable because the solver oscillates before it converges on the solution in the
reference data.

If you can achieve acceptable result accuracy, but the simulation runs too slowly for a given
execution-time budget, increase speed by increasing the step size or decrease the number of
iterations.

When you find a combination of solver settings that provide accurate enough results and a simulation
speed that fits your execution-time budget, you can attempt to run your model on a real-time target
machine by performing the hardware-in-the-loop simulation workflow. If you cannot find the right
combination of solver settings, perform the real-time model preparation workflow or increase your
real-time computing capability to improve simulation speed and accuracy. To increase your real-time
computing capability, upgrade your target hardware or partition your model for parallel processing.

Adjust Solver Settings to Improve Accuracy
You can generally improve accuracy by increasing the number of iterations or by decreasing the step
size.

1 Try to improve accuracy by increasing the number of iterations (N) to 10.

N = 10;
2 Run a timed simulation.
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tic; sim('ssc_hydraulic_actuator_HIL'); tSim2 = toc;
time2 = max(tSim2);

3 Extract the pressure and simulation time data.

simlog2 = simlog_ssc_hydraulic_actuator_HIL;
pNodeSim2 = simlog2.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_A.A.p;
pSim2 = pNodeSim2.series.values('Pa');
tSim2 = pNodeSim2.series.time;

4 Plot the results.

figure(h2)
hold on
plot(tSim2, pSim2, 'r:')
delete(h2Legend2)
axis([xStart xEnd yStart yEnd])
configSim2L = ['Local: Ts= ',num2str(ts),'s, N= ',num2str(N),'.'];
configSim2G = [' Global: Ts= ',num2str(tsG),'s.'];
timeSim2T = ['Time=',num2str(time2)]; 
cfgSim2 = [configSim2L,configSim2G,timeSim2T];
h2Legend3 = legend({'Reference',num2str(cfgSim1),num2str(cfgSim2)},...
    'Location','southoutside');

The simulation is fast enough for real-time simulation because it took less time to run than the
four-second simulation execution budget.

5 Zoom to evaluate accuracy.
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figure(h2)
axis([xZoomStart xZoomEnd yZoomStart yZoomEnd])

Overall, the results are not much more accurate than the results from the simulation with fewer
iterations.

6 Try to improve accuracy by decreasing the step size to 1e-3 seconds for the local and global
solvers. Specify 3 for the number of iterations (N).

ts = 1e-3;
tsG = 1e-3;
N = 3;

7 Run a timed simulation.

tic; sim('ssc_hydraulic_actuator_HIL'); tSim3 = toc;
time3 = max(tSim3);

8 Extract the pressure and simulation time data.

simlog3 = simlog_ssc_hydraulic_actuator_HIL;
pNodeSim3 = simlog3.Hydraulic_Actuator.Hydraulic_Cylinder.Chamber_A.A.p;
pSim3 = pNodeSim3.series.values('Pa');
tSim3 = pNodeSim3.series.time;

9 Plot the results.

figure(h2)
hold on
plot(tSim3, pSim3, 'k--')
delete(h2Legend3)
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axis([xStart xEnd yStart yEnd])
configSim3L = ['Local: Ts= ',num2str(ts),'s, N= ',num2str(N),'.'];
configSim3G = [' Global: Ts= ',num2str(tsG),'s.'];
timeSim3T = ['Time=',num2str(time3)]; 
cfgSim3 = [configSim3L,configSim3G,timeSim3T];
h2Legend4 = legend...
    ({'Reference',num2str(cfgSim1),num2str(cfgSim2),num2str(cfgSim3)},...
    'Location','southoutside');

The simulation takes longer but is fast enough given the four-second simulation execution-time
budget.

10 Zoom to evaluate accuracy better.

figure(h2)
axis([xZoomStart xZoomEnd yZoomStart yZoomEnd])
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The accuracy of the results is acceptable. For real-time simulation with the modified model, use the
solver settings that provided acceptable speed and accuracy:

• Three nonlinear iterations
• Global and local step sizes of 1e-3 seconds

If you can achieve accurate enough results, but the simulation runs too slowly for your execution-time
budget, improve speed by increasing the step size or decreasing the number of iterations.

When you find a combination of solver settings that provides accurate enough results and a
simulation speed that is less than your execution-time budget, you can run your model on a real-time
target machine. To run your model on a real-time target machine, perform the hardware-in-the-loop
simulation workflow.

If you cannot find the right combination of solver settings for real-time simulation, improve simulation
speed and accuracy by modifying the scope or fidelity of your model. For more information, see “Real-
Time Model Preparation Workflow” on page 11-4.

If you cannot make your model real-time capable by changing the scope or fidelity of your model,
increase your real-time computing capability. For more information, see “Upgrading Target
Hardware” on page 11-10 and “Simulating Parts of the System in Parallel” on page 11-10.

See Also
Solver Profiler
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Related Examples
• “Determine Step Size” on page 11-12
• “Determine System Stiffness” on page 11-82
• “Estimate Computation Costs” on page 11-87

More About
• “Filtering Input Signals and Providing Time Derivatives” on page 7-22
• “Fixed-Cost Simulation for Real-Time Viability” on page 11-71
• “Hardware-In-The-Loop Simulation Workflow” on page 11-106
• “Improving Speed and Accuracy” on page 11-8
• “Log and Plot Simulation Data” on page 13-8
• “Real-Time Model Preparation Workflow” on page 11-4
• “Solvers for Real-Time Simulation” on page 11-76
• “What Is Hardware-In-The-Loop Simulation?” on page 11-103
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What Is Hardware-In-The-Loop Simulation?
Hardware-in-the-loop (HIL) simulation is a type of real-time simulation. You use HIL simulation to test
your controller design. HIL simulation shows how your controller responds, in real time, to realistic
virtual stimuli. You can also use HIL to determine if your physical system (plant) model is valid.

In HIL simulation, you use a real-time computer as a virtual representation of your plant model and a
real version of your controller. The figure shows a typical HIL simulation setup. The desktop
computer (development hardware) contains the real-time capable model of the controller and plant.
The development hardware also contains an interface with which to control the virtual input to the
plant. The controller hardware contains the controller software that is generated from the controller
model. The real-time processor (target hardware) contains code for the physical system that is
generated from the plant model.

Why Perform Hardware-In-The-Loop Simulation?
Use HIL simulation to test the design of your controller when you are performing Model-Based
Design (MBD). The figure shows where HIL simulation fits into the MBD design-to-realization
workflow.
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Validation involves using actual plant hardware to test your controller in real-life situations or in
environmental proxies (for example, a pressure chamber). In HIL simulation, you do not have to use
real hardware for your physical system (plant). You also do not have to rely on a naturalistic or
environmental test setup. By allowing you to use your model to represent the plant, HIL simulation
offers benefits in cost and practicality.

There are several areas in which HIL simulation offers cost savings over validation testing. HIL
simulation tends to be less expensive for design changes. You can perform HIL simulation earlier than
validation in the MBD workflow so you can identify and redesign for problems relatively early the
project. Finding problems early includes these benefits:

• Your team is more likely to approve changes.
• Design changes are less costly to implement.

In terms of scheduling, HIL simulation is less expensive and more practical than validation because
you can set it up to run on its own.

HIL simulation is more practical than validation for testing your controller’s response to unusual
events. For example, you can model extreme weather conditions like earthquakes or blizzards. You
can also test how your controller responds to stimuli that occur in inaccessible environments like
deep sea or deep space.
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See Also

Related Examples
• “Generate, Download, and Execute Code” on page 11-117

More About
• “Hardware-In-The-Loop Simulation Workflow” on page 11-106
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Hardware-In-The-Loop Simulation Workflow

In this section...
“Perform Hardware-In-The-Loop Simulation” on page 11-109
“Insufficient Computational Capability for Hardware-In-The-Loop Simulation” on page 11-110

This figure shows the hardware-in-the loop simulation workflow. The connectors are exit points for
returning to the real-time model preparation workflow.

This figure shows the real-time model preparation workflow. The connector is an entry point for
returning to the real-time model preparation workflow from other real-time workflows such as the
hardware-in-the-loop simulation workflow.
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This figure shows the real-time simulation workflow. The connectors are exit points for returning to
the real-time model preparation workflow.
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Before performing the hardware-in-the-loop (HIL) simulation workflow:

1 Prepare and configure your model for real-time simulation. For information, see “Real-Time
Model Preparation Workflow” on page 11-4 and “Real-Time Simulation Workflow” on page 11-72.

2 Set up and configure the software, I/O interfaces, and connectivity for your development
computer, target computer, and I/O board. For information, see Simulink Real-Time Setup and
Configuration (Simulink Real-Time).

3 If you are performing HIL simulation to test your controller:

• Configure your controller.
• Connect your controller to the real-time computer.
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Perform Hardware-In-The-Loop Simulation
Generate, Download, and Execute Code

Use Simulink Real-Time to:

• Generate and compile code on the development computer.
• Download the real-time application to the target computer.
• Execute the real-time application remotely from the development computer.

For information, see “Generate, Download, and Execute Code” on page 11-117.

Evaluate Accuracy

Compare the results from the simulation on the target computer to your reference results. Are the
reference and modified model results the same? If not, are they similar enough that the empirical or
theoretical data also supports the results from the simulation of the modified model? Is the modified
model representing the phenomena that you want it to measure? Is it representing those phenomena
correctly? If you plan on using your model to test your controller design, is the model accurate
enough to produce results that you can rely on for system qualification? The answers to these
questions help you to decide if your real-time results are accurate enough.

Evaluate Speed

To find out if your simulation generates an overrun, examine the task execution time (TET) report
that Simulink Real-Time generates for the simulation.

Return to the Real-Time Model Preparation Workflow

Your model is not real-time capable if simulation on your real-time target machine generates an
overrun or produces results that do not match your reference results closely enough. To make your
model real-time capable by adjusting model fidelity, return to the real-time model preparation or real-
time simulation workflow.

Adjust the fidelity or scope of your model, and then step through the other processes and decisions in
the real-time model preparation workflow. Iterate on adjusting, simulating, and analyzing your model
until it is fast and accurate enough for you to perform the real-time simulation workflow. Perform the
real-time simulation workflow, and then attempt the hardware-in-the-loop simulation workflow again.
For information, see “Real-Time Model Preparation Workflow” on page 11-4 and “Real-Time
Simulation Workflow” on page 11-72.

Return to the Real-Time Simulation Workflow

Your model is not real-time capable if simulation on your real-time target machine generates an
overrun or produces results that do not match your reference results closely enough. To make your
model real-time capable by adjusting the simulation solver settings, return to the real-time simulation
workflow.

Perform the real-time simulation workflow, and then attempt the hardware-in-the-loop simulation
workflow again. For information, see “Real-Time Simulation Workflow” on page 11-72.
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Insufficient Computational Capability for Hardware-In-The-Loop
Simulation
Your real-time target machine can lack the computational capability for running your model in real
time. If your model fails to run in real time or produces unreliable results on your target machine
after multiple iterations of the real-time workflows, consider these options for increasing processing
power:

• “Upgrading Target Hardware” on page 11-10
• “Simulating Parts of the System in Parallel” on page 11-10

See Also

Related Examples
• “Generate, Download, and Execute Code” on page 11-117

More About
• “Real-Time Model Preparation Workflow” on page 11-4
• “What Is Hardware-In-The-Loop Simulation?” on page 11-103
• “Real-Time Simulation Workflow” on page 11-72
• “Code Generation Requirements” on page 11-111
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Code Generation Requirements

In this section...
“Hardware Requirements” on page 11-111
“Software Requirements” on page 11-111

Code generation for hardware-in-the-loop (HIL) simulation with Simulink Real-Time requires specific
hardware and software.

Hardware Requirements
The minimum hardware requirements for HIL simulation with Simulink Real-Time are:

• Development computer with a network or serial interface. For information on development
computer specifications, see Development Computer Requirements (Simulink Real-Time).

• Real-time target computer system, containing this hardware:

• CPU.
• I/O board. For information on supported I/O boards, see Supported Hardware: Hardware

Drivers.
• Protocol interface

• Controller, preconfigured with code from your controller model
• Connection cable for linking the development computer to the real-time target machine. For

information, see “PCI Bus Ethernet Setup” (Simulink Real-Time).
• Peripherals that provide a way to:

• Boot the real-time target computer
• Transfer the Simulink Real-Time operating system and executable code to the real-time target

computer
• Wiring harness to connect the real-time target computer to the controller.

Software Requirements
For information on the minimum software requirements for HIL simulation with Simulink Real-Time,
see Simulink Real-Time Software Requirements. The Simulink Real-Time requirements include a C
compiler. For information, see “Command-Line C Compiler Configuration” (Simulink Real-Time).

Note If you want more configuration options for code optimization, use Embedded Coder® to
generate code for your real-time computer. For information, see “Embedded Coder Product
Description” (Embedded Coder).

See Also
Simulink Real-Time Explorer
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Related Examples
• “Set Up and Configure Simulink Real-Time” (Simulink Real-Time)
• “Create and Run Real-Time Application from Simulink Model” (Simulink Real-Time)

More About
• “About Code Generation from Simscape Models” on page 12-2
• “How Simscape Code Generation Differs from Simulink” on page 12-5
• “Limitations” on page 13-3
• Simulink Real-Time Setup and Configuration (Simulink Real-Time)
• “What Is Hardware-In-The-Loop Simulation?” on page 11-103
• “Hardware-In-The-Loop Simulation Workflow” on page 11-106
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Software and Hardware Configuration
Before simulating your Simscape model on your target hardware using Simulink Real-Time, configure
your development and target computers for code generation and real-time simulation:

1 Install Simulink Real-Time software on your development computer. The development computer
downloads the kernel software and real-time application to your target machine at run time.
Code generation and hardware-in-the-loop (HIL) simulation with Simulink Real-Time require
specific hardware and software, including a C compiler. For information, see “Code Generation
Requirements” on page 11-111. For Simulink Real-Time installation and configuration
information, see Simulink Real-Time Software Requirements and “Development Computer
Software Installation” (Simulink Real-Time).

2 Configure your real-time target computer for HIL with Simulink Real-Time. For Simulink Real-
Time to work properly on the target computer, you configure the target settings to match the
settings of the development computer and boot the target machine. For information, see “Target
Computer Settings” (Simulink Real-Time) and “Target Computer Boot Methods” (Simulink Real-
Time).

3 Configure your target computer with the required I/O modules. You can link to I/O boards via
connection cables or install them in PCI slots of the target computer. The I/O boards provide a
direct interface to the sensors, actuators, and other devices for real-time control or signal
processing system models.

For information on supported I/O boards, see Supported Hardware: Hardware Drivers.
4 Configure your development computer for Ethernet communication with your target computer.

For information, see “Development Computer Communication Setup” (Simulink Real-Time).
5 Physically connect your target computer to your development computer. For information, see

“PCI Bus Ethernet Setup” (Simulink Real-Time).
6 Configure the Simulink Real-Time target settings. For a configuration procedure that uses

Simulink Real-Time, see “Target Computer Settings” (Simulink Real-Time).

See Also
Simulink Real-Time Explorer

More About
• “Code Generation Requirements” on page 11-111
• “Target Computer Boot Methods” (Simulink Real-Time)
• “Target Computer Settings” (Simulink Real-Time)
• “Select and Configure C or C++ Compiler” (Simulink Coder)
• Simulink Real-Time Setup and Configuration (Simulink Real-Time)
• “What Is Hardware-In-The-Loop Simulation?” on page 11-103
• “Hardware-In-The-Loop Simulation Workflow” on page 11-106
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Signal and Parameter Visualization and Control
The Simulink Real-Time environment contains an interface for your target computer. The interface
provides these capabilities for signal acquisition:

• Create, save, and load signal groups.
• Monitor signals.
• Add and configure host, target machine, or file scopes.
• Attach signals to or remove signals from scopes.
• Start and stop scopes.
• Attach signals to instruments.

The Simulink Real-Time interface also provides these capabilities for changing parameters:

• Create, save, and load parameter groups.
• Display and change parameter values.
• Attach parameters to instruments.

You can use the Simulink Real-Time interface from MATLAB or Simulink. You can also use other
development environments to create custom standalone client applications outside of MATLAB.
Therefore, there are several ways that you can visualize and control signals and parameters in a real-
time application from development and target computers.

This table compares the interfaces that Simulink Real-Time supports for signal visualization and
parameter control.

Interface Signal
Acquisition

Parameter
Control

Can Run
Outside of
MATLAB

Simulink Real-Time Explorer Yes Yes Yes
“MATLAB Command-Line Interface” (Simulink Real-
Time)

Yes Yes No

“Simulink External Mode Interface” (Simulink Real-Time) Yes Yes No
“Add Simulink Real-Time Blocks to Simulink Model”
(Simulink Real-Time)

Yes No No

“Target Computer Command-Line Interface” (Simulink
Real-Time)

Yes Yes Yes

“Custom UI with Simulink Real-Time API for
Microsoft .NET Framework” (Simulink Real-Time)

Yes Yes Yes

“Custom UI with Simulink Real-Time C API” (Simulink
Real-Time)

Yes Yes Yes

See Also
slrtexplr | slrt
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Related Examples
• “Monitor Signals with Simulink Real-Time Explorer” (Simulink Real-Time)
• “Monitor Signals with MATLAB Language” (Simulink Real-Time)
• “Configure Real-Time Target Scope Blocks” (Simulink Real-Time)
• “Tune Parameters with Simulink Real-Time Explorer” (Simulink Real-Time)

More About
• “Tunable Block Parameters and Tunable Global Parameters” (Simulink Real-Time)
• “Signal Monitoring Basics” (Simulink Real-Time)
• “Signal Tracing Basics” (Simulink Real-Time)
• “Simulink Real-Time Scope Usage” (Simulink Real-Time)
• “Real-Time Application Objects” (Simulink Real-Time)
• “Using the C API” (Simulink Real-Time)
• “Using the Simulink Real-Time API for Microsoft .NET Framework” (Simulink Real-Time)
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Troubleshoot Hardware-in-the-Loop Simulation Issues
If your real-time application generates an overrun, to improve application execution time:

• Use the processes described in “Real-Time Model Preparation Workflow” on page 11-4, “Real-Time
Simulation Workflow” on page 11-72, and “Hardware-In-The-Loop Simulation Workflow” on page
11-106.

• Run the Simulink Real-Time Performance Advisor Checks. Use the Execute real-time
application activity mode in Performance Advisor, which includes checks specific to physical
models. The mode helps you optimize your Simscape model for real-time execution. The checks
are organized in folders. The checks in the Simscape checks folder are applicable to all physical
models. Subfolders contain checks that target blocks from add-on products such as Simscape
Electrical and Simscape Driveline™.

To access the checks:

1 Open the Performance Advisor. On the Debug tab, click Performance Advisor >
Performance Advisor.

2 In the Performance Advisor window, under Activity, select Execute real-time
application.

3 In the left pane, expand the Real-Time folder, and then the Simscape checks folder.
4 Run the top-level Simscape checks. If your model contains blocks from an add-on product,

also run the checks in the subfolder corresponding to that product.

For more information, see “Troubleshoot Unsatisfactory Real-Time Performance” (Simulink Real-
Time) and “Simulink Real-Time Performance Advisor Checks” (Simulink Real-Time).

A Simulink Real-Time simulation can also fail due to development and target computer issues,
changes in underlying system software, I/O module issues, and procedural errors. To address these
issues, follow the workflow in “Troubleshoot with Confidence Test” (Simulink Real-Time). For more
information, see “Troubleshooting in Simulink Real-Time” (Simulink Real-Time)

See Also

More About
• “Real-Time Model Preparation Workflow” on page 11-4
• “Real-Time Simulation Workflow” on page 11-72
• “Hardware-In-The-Loop Simulation Workflow” on page 11-106
• “Troubleshooting Real-Time Simulation Issues” on page 11-80
• “Automated Performance Optimization” (Simulink)
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Generate, Download, and Execute Code
In this section...
“Requirements for Building and Executing Simulink Real-Time Applications” on page 11-117
“Create, Build, Download, and Execute a Real-Time Application” on page 11-117

To perform hardware-in-the-loop simulation on target hardware, use Simulink Real-Time to:

• Generate and compile code on the development computer.
• Download the real-time application to the target computer.
• Execute the real-time application remotely from the development computer.

Requirements for Building and Executing Simulink Real-Time
Applications
Before building and executing your real-time application:

1 Prepare and configure your model for real-time simulation. For information, see “Real-Time
Model Preparation Workflow” on page 11-4 and “Real-Time Simulation Workflow” on page 11-72.

2 Set up and configure the software, I/O interfaces, and connectivity for your development
computer, target computer, and I/O board. For information, see Simulink Real-Time Setup and
Configuration (Simulink Real-Time) and “MATLAB Command-Line Interface” (Simulink Real-
Time).

Create, Build, Download, and Execute a Real-Time Application
For an example that shows you how to generate code for the model on your development computer,
transfer the code to your real-time computer, and execute the code on your real-time computer, see
“Create and Run Real-Time Application from Simulink Model” (Simulink Real-Time).

See Also
slrtexplr

See Also

Related Examples
• “Set Up and Configure Simulink Real-Time” (Simulink Real-Time)
• “Create and Run Real-Time Application from Simulink Model” (Simulink Real-Time)

More About
• “Hardware-In-The-Loop Simulation Workflow” on page 11-106
• “What Is Hardware-In-The-Loop Simulation?” on page 11-103
• “About Code Generation from Simscape Models” on page 12-2
• “How Simscape Code Generation Differs from Simulink” on page 12-5
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• “Code Generation Requirements” on page 11-111
• “Build Real-Time Application” (Simulink Real-Time)
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Check for Target Hardware Overruns
In this section...
“Prerequisites” on page 11-119
“About Simulation Overruns” on page 11-119
“Generate Reference Results” on page 11-120
“Configure Model for Deployment” on page 11-121
“Evaluate Task-Execution Time” on page 11-122
“Adjust Step Size Based on Maximum Task-Execution Time” on page 11-124

This example shows how to:

• Configure a Simulink Real-Time Scope block to acquire signal data during a real-time simulation
on target hardware.

• Use TLCOptions settings to execute through CPU overloads on your target hardware.
• Use a Simulink target object to check for overruns and find the minimum solver step size for

avoiding overruns.
• Verify that results from a simulation that uses a larger time step are acceptably accurate.

Prerequisites
This example requires an active connection between your development computer and a real-time
target machine. For information on configuring and connecting your development computer to target
hardware, see Simulink Real-Time Setup and Configuration (Simulink Real-Time).

About Simulation Overruns
An overrun occurs when a target machine cannot compute the results for an individual time step in a
simulation because the processing tasks for the step overload the CPU in the target machine. By
default, when the Simulink Real-Time kernel detects a CPU overload, it stops model execution on the
real-time target machine. You can use Simulink and Simulink Real-Time tools to determine the task
execution time (TET) for the step that causes the overrun so that you can adjust your sample time (Ts)
accordingly. However, because it is possible that a larger TET occurs later in the simulation, your
model might generate another overrun when you next simulate.

You can direct the Simulink Real-Time environment using TLCOptions settings to allow CPU
overloads so the target machine can execute through overruns. When your target machine executes
to completion, you can determine the maximum task-execution time (TETmax) for the entire
simulation. You can then use TETmax to determine the minimum step size (Tsmin) that your target
machine requires to execute your model in real time without generating an overrun. For information
on using TETmax to determine Tsmin, see “Estimate Computation Costs” on page 11-87.

The tools that you can use to check for overruns or determine the maximum TET include:

• Simulink targets objects
• Simulink Real-Time Explorer
• Simulink Real-Time target management blocks
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Simulink Real-Time Explorer and Simulink Real-Time target management blocks allow you to track
the data graphically throughout the simulation, while the target object only reports the number of
overruns and the maximum and minimum TET values. However, because the target management
blocks rely on I/O processing during the simulation, they have a higher computational cost and,
therefore, larger TETs than target objects do. For Simscape models, which tend to have long
execution times, it is generally better to use a target object to check for overruns and determine TET.

The optimal time step for your simulation is one that balances speed with accuracy. If the executable
version of your model overruns on your target machine, you can increase the size of the solver time
step to give the CPU enough time to avoid an overload.

Generate Reference Results
Generate reference results from the model on your development computer so that you have a
benchmark for verifying the accuracy of results from simulating on target hardware.

1 To open the reference model, at the MATLAB command prompt, enter:

ssc_resistive_ac_circuit
2 Simulate the model.
3 To see the results, open the Development Scope block.

The current through the resistor is 0.3 A.
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Configure Model for Deployment
To prepare your Simscape development model for a real-time simulation on target hardware,
configure it to build an executable that tracks TET and allows you to see simulation results.

1 Add a Simulink Real-Time Scope block to the Simscape plant model.

a In the Simulink library browser, navigate to the Simulink-Real Time > Displays and
Logging library.

b Add a Scope block to the Simscape model.
c Connect the scope to the output signal from the PS-Simulink Converter block.

2 Configure Simulink Real-Time Scope block as a host scope.

a Specify the Scope type parameter as Host.
b Set the Number of samples to 100000.
c Click OK.

3 Configure the Simscape model configuration parameters for TET analysis using Simulink Real-
Time.

a Open the model configuration parameters.
b In the left pane of the Model Parameter Configuration window, select Code Generation.
c Click Browse...
d In the System Target File Browser, for the System Target File, select slrt.tlc.
e Click OK.
f In the left pane of the Model Parameter Configuration window, select Code Generation >

Verification.
g Select the Measure task execution time check box.
h Click OK.
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Evaluate Task-Execution Time
Connect your development computer to a real-time target machine before you can complete these
steps. For information on configuring and connecting your development computer to target hardware,
see Simulink Real-Time Setup and Configuration (Simulink Real-Time).

You can use a Simulink Real-Time target object to check for overruns and determine TET after you
simulate in real time on target hardware. The target object, which communicates with the real-time
target machine, reports the status of the real-time application to the development computer.

1 Run your real-time application on the target hardware.

a
To generate code from your model, click the Build button .

b To set the simulation mode for executing on a target machine, in the Simulink window, in the
Modeling select External.

c To connect your development computer and target machine and to transfer your model

parameters to the target machine, click the Connect to Target button .
d

To execute your real-time application on the target machine, click the Run button .
2 To use the target object to print the simulation status, on your development computer, at the

MATLAB command prompt, enter:

tg = slrt

Target: SLRTLABTGT2
   Connected            = Yes
   Application          = ssc_resistive_ac_circuit
   Mode                 = Real-Time Single-Tasking
   Status               = stopped
   CPUOverload          = detected

   ExecTime             = 0.0000
   SessionTime          = 11.8761
   StopTime             = 1.000000
   SampleTime           = 0.000010
   AvgTET               = 0.000021
   MinTET               = 0.000021
   MaxTET               = 0.000021
   ViewMode             = 0

   TimeLog              = Vector(2) 
   StateLog             = Off 
   OutputLog            = Off 
   TETLog               = Vector(2) 
   MaxLogSamples        = 50000
   NumLogWraps          = 0
   LogMode              = Normal

   Scopes               = 1
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   NumSignals           = 3
   ShowSignals          = off

   NumParameters        = 2
   ShowParameters       = off

In this case, when the task execution time (maxTET = 0.000021) exceeds the step size
(SampleTime = 0.000010), the Simulink Real-Time kernel detects an overrun (CPUOverload =
detected) and stops the simulation.

3 The simulation stops at the very beginning of the execution even though it has a specified stop
time of 1 second (ExecTime = 0, StopTime = 1.000000). In order to determine the maximum
TET for the entire simulation time, use the Simulink Real-Time TLCOptions Properties function
to configure the real-time application to continue to run after it detects an overrun. The function
allows you to specify target computer overload values for the Number of acceptable
overloads property programmatically. The application executes through the number of
overloads that you specify, but stops executing if it detects an additional overload.

set_param('ssc_resistive_ac_circuit',...
  'TLCOptions', '-axPCMaxOverloads=200000')

4 To regenerate the code with the new property setting, click the Build button.
5 To reconnect to the target machine, click the Connect To Target button.
6 Run the simulation.
7 Obtain the statistics.

tg = slrt

Target: SLRTLABTGT2
   Connected            = Yes
   Application          = ssc_resistive_ac_circuit
   Mode                 = Real-Time Single-Tasking
   Status               = stopped
   CPUOverload          = none

   ExecTime             = 1.0000
   SessionTime          = 6.3129
   StopTime             = 1.000000
   SampleTime           = 0.000010
   AvgTET               = 0.000016
   MinTET               = 0.000014
   MaxTET               = 0.000032
   ViewMode             = 0

   TimeLog              = Vector(50000) 
   StateLog             = Off 
   OutputLog            = Off 
   TETLog               = Vector(50000) 
   MaxLogSamples        = 50000
   NumLogWraps          = 2
   LogMode              = Normal

   Scopes               = 1
   NumSignals           = 3
   ShowSignals          = off

   NumParameters        = 2
   ShowParameters       = off
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The simulation executes to completion with a maximum TET of 0.000032.

Adjust Step Size Based on Maximum Task-Execution Time
Adjust the sample time, rerun the simulation, check for overruns and for the accuracy of the results.

1 To avoid simulation overruns, specify a step size that is at least 20% larger than the TETmax from
the simulation on your real-time target machine. At the MATLAB command prompt, enter:

ts = 4e-5;
2 Remove the overload override.

set_param('ssc_resistive_ac_circuit', 'TLCOptions', '')
3 Regenerate the code.
4 Connect to the target machine.
5 Run the simulation.
6 Obtain the statistics.

tg = slrt

Target: SLRTLABTGT2
   Connected            = Yes
   Application          = ssc_resistive_ac_circuit
   Mode                 = Real-Time Single-Tasking
   Status               = stopped
   CPUOverload          = none

   ExecTime             = 1.0000
   SessionTime          = 8.7715
   StopTime             = 1.000000
   SampleTime           = 0.000040
   AvgTET               = 0.000016
   MinTET               = 0.000015
   MaxTET               = 0.000028
   ViewMode             = 0

   TimeLog              = Vector(25001) 
   StateLog             = Off 
   OutputLog            = Off 
   TETLog               = Vector(25001) 
   MaxLogSamples        = 50000
   NumLogWraps          = 0
   LogMode              = Normal

   Scopes               = 1
   NumSignals           = 3
   ShowSignals          = off

   NumParameters        = 2
   ShowParameters       = off

The simulation executes to completion with a maximum TET of 0.000028.
7 To see the results, open the Development Scope block.
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The current through the resistor is 0.3 A. The results match the reference results and the
simulation now runs without yielding an overrun.

See Also
Get Overload Counter | Scope | Set Overload Counter | SimulinkRealTime.target | TLCOptions |
Task Execution Time | slrt | xPCIsOverloaded

Related Examples
• “Set Up and Configure Simulink Real-Time” (Simulink Real-Time)
• “Configure Real-Time Host Scope Blocks” (Simulink Real-Time)
• “Generate, Download, and Execute Code” on page 11-117
• “Configure and Control a Real-Time Application” (Simulink Real-Time)

More About
• “Real-Time Model Preparation Workflow” on page 11-4
• Simulink Real-Time Setup and Configuration (Simulink Real-Time)
• “CPU Overload Options” (Simulink Real-Time)
• “Real-Time Application Objects” (Simulink Real-Time)
• “Host Scope Usage” (Simulink Real-Time)
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Change Parameter Values on Target Hardware
In this section...
“Prerequisites” on page 11-126
“Configure the Simscape Model for Deployment” on page 11-126
“Deploy the Model to the Real-Time Target Machine” on page 11-127
“Change Parameters and See Results Using Simulink Real-Time Explorer” on page 11-128

This example shows how to:

• Configure a Simscape plant model to generate code that supports signal visualization and changes
to Simscape run-time parameters.

• Use Simulink Real-Time and Simulink Coder to deploy an executable version of the plant model to
a real-time target machine.

• Use Simulink Real-Time Explorer on your development computer to change the value of a
Simscape run-time parameter on the target machine and to see the effects of the parameter
change.

Prerequisites
This example requires an active connection between your development computer and a real-time
target machine. For information on configuring and connecting your development computer to target
hardware, see Simulink Real-Time Setup and Configuration (Simulink Real-Time).

Configure the Simscape Model for Deployment
To prepare to change parameter values on a real-time target machine, configure the Simscape run-
time, code generation, and scope parameters for your Simscape model on your development
computer.

1 To open the reference model, at the MATLAB command prompt, enter:

ssc_resistive_ac_circuit

The model opens and the PreLoadFcn loads parameters for the model to the MATLAB workspace.
The peak voltage, A_peak_voltage_src, is 3 V, the resistance, R_resistor, is 10 Ohms, and the step
size is 1e-5.

2 To allot enough time to see the effects of parameter-tuning on the target machine, configure the
application to run until you stop the simulation, set the simulation stop time to inf.

3 Adjust the step size for real-time simulation. At the MATLAB command prompt, enter:

ts = 4e-5;
4 Configure the model for code generation using Simulink Coder and Simulink Real-Time.

a Open the model configuration parameters.
b To set the System Target File, on the Code Generation pane, click Browse and select

slrt.tlc.
c In the System Target File Browser window, click OK.
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d Open the Report pane.
e To display a code generation report, on the Report pane, select Create code generation

report and Open report automatically.
f Click OK.

5 Add a Simulink Real-Time Scope block to the Simscape plant model.

a In the Simulink library browser, navigate to the Simulink-Real Time > Displays and
Logging library.

b Add a Scope block to the Simscape model.
c Connect the scope to the output signal from the PS-Simulink Converter block.

6 Configure Simulink Real-Time Scope block as a host scope.

a Specify the Scope type parameter as Host.
b Set the Number of samples to 100000.
c Click OK.

Deploy the Model to the Real-Time Target Machine
Build an executable application and download it to real-time hardware.

1 Check that you are connected to the real-time target machine, in this case, the target name is
SLRTLABTG2:

tg = slrt

Target: SLRTLABTGT2
Connected            = Yes
Application          = loader

2 To build and download the code to the target machine, in the model window, click the Build

button .

The code report opens after the code download.
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3 Verify that the generated code represents the Simscape run-time variables in a data structure.

a In the Code Generation Report, in the left pane, in the Data files node, open
ssc_resistive_ac_circuit_data.c.

b Search for the section of the code that contains the parameter variables. In the Find box,
enter Block parameters (auto storage).

c Verify that the A_peak_voltage_src and the R_resistor variables are represented in the
P_ssc_resistive_ac_circuit_T ssc_resistive_ac_circuit_P data structure.

Change Parameters and See Results Using Simulink Real-Time
Explorer
Use Simulink Real-Time Explorer to change Simscape run-time parameters between runs of your real-
time application on target hardware. Visualize the simulation results on a scope in the Explorer
window.

1 To open Simulink Real-Time Explorer, on your development computer, at the MATLAB command
prompt, enter:

slrtexplr
2 View the Simscape run-time parameters in Simulink Real-Time Explorer.

a In the Applications pane, expand the real-time application node, in this case,
SLRTLABTGT2/ssc_resistive_ac_circuit.

b Under the real-time application node, expand the Model Hierarchy node.
c Select ssc_resistive_ac_circuit and click the View Parameters button .

The Parameters workspace opens, showing a table of parameters with properties and
actions.
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3 View the host scope in Simulink Real-Time Explorer.

a In the Scopes pane, expand the real-time application node (SLRTLABTGT2/
ssc_resistive_ac_circuit).

b Under the real-time application node, expand the Host Scopes node.
c To open the Scopes workspace, select Scope 1 and click the View Host Scope button .
d To make both the parameter and scope workspaces visible at the same time, click the scope

workspace tab and drag the tab down until the Pane Move button  appears in the middle
of the dialog box. Release the tab when the cursor reaches the lower quadrant of the Pane
Move button.
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4 To see the value for the peak amplitude of the voltage source, click the arrow next to the
A_peak_voltage_src parameter.

The Values text box opens, containing the original value of 3 V for the peak amplitude.
5 Simulate with the original peak amplitude value. To start execution, click the real-time

application (SLRTLABTGT2/ssc_resistive_ac_circuit) and then click the Start button  on the
Applications toolbar.
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The scope shows that the current is approximately 0.3 A. The defining equation for the circuit in
the model, is I = V/R. The results are correct for the given voltage (10 V) and resistance (3
Ohms).

6 Change the parameter that represents the peak amplitude for the Simscape Voltage Source
block. Because Simscape run-time parameters are run-time configurable, cannot change the
parameter value during simulation. Instead, you stop the simulation, change the value of the
parameter, and apply the parameter change. Then, you restart the simulation to see how
changing the parameter affects the results.

a To stop execution, click the real-time application in the Applications workspace, and then
click the Stop button .

b Specify 50 in the Values text box for the peak amplitude parameter and press Enter.
c Click the Apply parameter value changes button .
d Click the Start button  to simulate with the modified peak amplitude value.

The scope shows that the current is approximately 5 A when the peak amplitude is 50 V. The
results reflect the change in the value for the voltage given that the resistance is 10 Ohms.

7 Modify and revert the value for the resistance of the Resistor block.

a Stop the execution.
b Click the arrow next to the R_resistor parameter.
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The Values text box opens, containing the original value of 10 Ohms for the resistance.
c Specify 2 in the text box, and then press Enter.
d To revert the resistance to its previous value, click the Revert button .

See Also
Scope | SimulinkRealTime.target | slrt | slrtexplr

Related Examples
• “Generate, Download, and Execute Code” on page 11-117
• “Set Up and Configure Simulink Real-Time” (Simulink Real-Time)
• “Configure and Control a Real-Time Application” (Simulink Real-Time)
• “External Mode Simulation with TCP/IP or Serial Communication” (Simulink Coder)

More About
• “Manage Simscape Run-Time Parameters” on page 10-5
• Simulink Real-Time Setup and Configuration (Simulink Real-Time)
• “Tunable Block Parameters and Tunable Global Parameters” (Simulink Real-Time)
• “Signal Monitoring Basics” (Simulink Real-Time)
• “Simulink Real-Time Scope Usage” (Simulink Real-Time)
• “Real-Time Application Objects” (Simulink Real-Time)
• “Model Callbacks” (Simulink)
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Requirements for Using Alternative Platforms
In this section...
“Hardware Requirements” on page 11-133
“Software Requirements” on page 11-133

Simulink Real-Time creates standalone, real-time applications for performing hardware-in-the-loop
(HIL) simulation on dedicated hardware. Creating and executing a standalone, real-time application
using an alternative platform requires specific hardware and software.

Hardware Requirements
The minimum hardware requirements for HIL simulation with a custom application are:

• Development computer with a network, serial, or USB interface for communicating with the real-
time processor

• A real-time capable target CPU or computer that supports 64-bit precision floating-point
arithmetic and 32-bit integer size

• I/O board supported by the real-time target machine
• Controller preconfigured with code from your controller model
• Peripheral for transferring code to the real-time target machine
• Wiring harness to connect the real-time target machine to the controller

Note Your real-time target machine may also require a real-time operating system (RTOS).

Software Requirements
The minimum software requirements for HIL simulation with a custom application are:

• Embedded Coder and the Embedded Coder Software Requirements.
• Simulink Coder and the Simulink Coder Software Requirements.
• Template example main function that you can manually or automatically combine with generated

code. For information, see “Incorporate Generated Code Using an Example Main Function”
(MATLAB Coder).

• I/O driver. Options are:

• C code I/O drivers for the code generation build
• Precompiled static or dynamic library with the necessary documentation

• Compiler requirements

• C compiler.
• Cross compiler that supports 64-bit precision floating-point arithmetic and 32-bit integer size.

For details on supported compiler versions, see Supported and Compatible Compilers.

By default, Simulink Coder uses ISO®/IEC 9899:1990 (C89/C90 [ANSI]) library to produce C
code. Not all compilers support this library. To learn how to enable the code generator to use a
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different math extensions library in a model, see “Configure Standard Math Library for Target
System” (Simulink Coder).

See Also

More About
• “About Code Generation from Simscape Models” on page 12-2
• “How Simscape Code Generation Differs from Simulink” on page 12-5
• “Hardware-In-The-Loop Simulation Workflow” on page 11-106
• “Limitations” on page 13-3
• “What Is Hardware-In-The-Loop Simulation?” on page 11-103
• “Configure Run-Time Environment Options” (Simulink Coder)
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Extending Embedded and Generic Real-Time System Target
Files

Simulink Coder and Embedded Coder use system target files (STFs) to generate code for interfacing
with specific real-time operating systems. The Target Language Compiler (TLC) uses STFs and
various other target files to convert a model into generated code. In addition to including STFs for
ready-to-run configurations, Simulink Coder and Embedded Coder allow you to extend STFs to
support third-party and custom target hardware. For more information on TLC files and STFs,
including a list of available STFs, see “Configure a System Target File” (Simulink Coder) and “Target
Language Compiler Basics” (Simulink Coder).

Generic real-time (GRT) is a Simulink Coder STF that you can use when you generate code from a
Simscape model for hardware-in-the-loop (HIL) simulation. To generate code for HIL simulation, you
must configure your Simscape model to use a fixed step, local solver. To learn about Simscape solver
configurations that support HIL simulation, see “Solvers for Real-Time Simulation” on page 11-76.

Embedded real-time (ERT) is an Embedded Coder STF for deploying production-quality code for real-
time execution of the algorithm for your Simulink controller. Do not deploy code that you generate
from a Simscape model to production platforms. Simscape models contain constructs that are not
compatible with performance-related Embedded Coder Model Advisor checks, such as “Check for
blocks not recommended for C/C++ production code deployment”. For more information, see
“Embedded Coder Model Advisor Checks for Standards, Guidelines, and Code Efficiency” (Embedded
Coder).

To extend ERT or GRT system target files and create hardware-specific, standalone applications, use
the toolchain build process approach. The toolchain approach generates optimized makefiles and
supports custom toolchains. For information, see “Customize System Target Files” (Simulink Coder)
and “Support Toolchain Approach with Custom Target” (Simulink Coder). To get started extending
system target files, see “Sample Custom Targets” (Simulink Coder).

Third-party vendors supply additional system target files for the Simulink Coder product. For more
information about third-party products, see the MathWorks Connections Program Web page:
https://www.mathworks.com/products/connections.

See Also

More About
• “Compare System Target File Support Across Products” (Simulink Coder)
• “Template Makefiles and Make Options” (Simulink Coder)
• “Customize System Target Files” (Simulink Coder)
• “Custom Target Optional Features” (Simulink Coder)
• “Configure Production and Test Hardware” (Simulink Coder)
• “Target Language Compiler Basics” (Simulink Coder)
• “Configure Generated Code with TLC” (Simulink Coder)
• “Target Language Compiler Library Functions Overview” (Simulink Coder)
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Precompiled Static Libraries
Simscape and its add-on products provide static libraries precompiled for compilers supported by
Simulink Coder software. For details on supported compilers, see Supported and Compatible
Compilers. For all other compilers, the static libraries needed by code generated from Simscape
models are compiled once per model during the code generation build process.

To save time during the build process, precompile new or updated S-function libraries (MEX-files) for
a model by using the MATLAB language function rtw_precompile_libs. You can also use the
rtw_precompile_libs function to recompile a precompiled S-function library. Recompiling a
precompiled library allows you to customize compiler settings for various platforms or environments.
For details on using rtw_precompile_libs, see “Precompile S-Function Libraries” (Simulink
Coder).

Typically, a target machine places cross-compiled versions of the precompiled libraries in a default
location as specified in an rtwmakecfg.m file. The default file suffix and file extension used by the
Simulink Coder code generator to name precompiled libraries during the build process are:

• On Windows® systems, model_rtwlib.lib
• On UNIX® or Linux® systems, model_rtwlib.a

You can control the file destination, location, suffix, and extension by customizing the system target
file (STF) for your target hardware. For more information, see “Control Library Location and Naming
During Build” (Simulink Coder) and “Use rtwmakecfg.m API to Customize Generated Makefiles”
(Simulink Coder).

See Also
rtw_precompile_libs

Related Examples
• “Use rtwmakecfg.m API to Customize Generated Makefiles” (Simulink Coder)
• “Control Library Location and Naming During Build” (Simulink Coder)
• “Customize Template Makefiles” (Simulink Coder)
• “Precompile S-Function Libraries” (Simulink Coder)
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Initialization Cost
Initialization occurs at the beginning of simulation when simulation time, t, is at the model Start
Time. During the first call to ModelOutputs, Simscape performs model initialization. The solver
determines the simulation starting point by iteratively computing the initial values for all system
variables. Finding a solution that satisfies the model equations for a nonlinear system can take more
time than the time step allows. If the computation time exceeds the time step, a central processing
unit (CPU) overload occurs. Real-time processors typically respond to CPU overloads by terminating
model execution.

If your real-time application terminates when t is at the model Start Time, disable the automatic
shutdown response on your real-time hardware to CPU overloads for that time period. To determine
how to disable such processes, check with your hardware vendor.

See Also

More About
• “How Simscape Simulation Works” on page 7-6
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Generate HDL Code Using the Simscape HDL Workflow Advisor
If you have a license for HDL Coder, you can generate HDL code from your Simscape model for
deployment onto FPGA platforms using the Simscape HDL Workflow Advisor. The Simscape HDL
Workflow Advisor first helps you to convert your Simscape model to a Simulink implementation. It
then converts the Simulink model to HDL code using HDL Coder. Converting your Simscape model to
HDL code allows you to:

• Accelerate the simulation of physical systems by using an optimized implementation of Simscape
models

• Use the reconfigurability and parallelism capabilities of the FPGA for rapid prototyping
• Simulate the HDL implementation in real time using hardware-in-the-loop (HIL) simulation

Simscape HDL Workflow Advisor Steps
The general workflow for converting a Simscape model to HDL code using the Simscape HDL
Workflow Advisor consists of these steps.

1 Generate baseline results for your Simscape model.
2 Ensure that the model contains only linear or switched linear blocks by using the

simscape.findNonLinearBlocks function. This function detects the nonlinear blocks in your
Simscape model. The function returns the number and type of networks, that is, linear, switched
linear, or nonlinear, based on the blocks that the network contains. The function also returns the
names of any blocks that yield nonlinear equations. Update or replace any blocks that yield
nonlinear equations.

3 Ensure that simulation results of the model, which now contains no blocks that yield nonlinear
equations, match the baseline results.

4 Configure the Simscape network for real-time simulation and HDL code generation:

a Add blocks that allow you to monitor the progress of the HDL workflow in terms of
simulation time.

b Display sample time information.
c Configure the Simscape network for fixed-step, fixed cost simulation.

5 Ensure that simulation results of the discrete model match the baseline results.
6 Run the Simscape HDL Workflow Advisor tasks by using the sschdladvisor function. The

sschdladvisor function:

• Checks for HDL code generation compatibility by ensuring that the model is switched linear
and is configured for real-time simulation.

• Extracts state-space coefficients for the Simscape network.
• Generates an HDL code generation compatible implementation of the Simscape network.

7 Ensure that simulation results from the HDL code generation compatible implementation match
the baseline results.

8 Generate HDL code:

a Configure the Simulink model for HDL code generation by running the hdlsetup function.
The hdlsetup function configures the fixed-step solver for HDL code generation
compatibility and specifies the simulation start and stop times.
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b Save the model parameters and validation model generation settings.
c Generate code using the makehdl function.

Limitations
The Simscape HDL Workflow Advisor does not work for Simscape networks that contain:

• Events.
• Mode charts.
• Delays.
• Enabled runtime parameters.
• Periodic sources.
• Nonlinearities that result from network connectivity. If your model does contain a nonlinearity of

this sort, the sschdladvisor function may run all tasks to completion, but generates a zero-
value output.

Generate HDL Code for a Simscape Model Using the Simscape HDL
Workflow Advisor
This example shows how to convert your Simscape model to HDL code using the Simscape HDL
Workflow Advisor. To learn how to configure your Simscape network and Simulink model for real-time
simulation and HDL code generation, see “Model Preparation” on page 11-139. To open a version of
the model that is already prepared for using the Simscape HDL Workflow Advisor, see “Generate HDL
Code by Using the Simscape HDL Workflow Advisor” on page 11-145.

Model Preparation

To prepare your Simscape model for conversion to HDL code for FPGA deployment:

1 Open the model and show hidden block names. At the MATLAB command prompt, enter

baselineModel = 'ssc_bridge_rectifier';
load_system(baselineModel)
set_param(baselineModel,'HideAutomaticNames','off')
open_system(baselineModel)

2 To compare the baseline simulation results to results from modified versions of the model later,
remove the data point limitation on the Load Voltage scope block and enable data logging to the
Simulation Data Inspector for the signal that inputs data to the scope.

a In the configuration parameters for the scope, for the Logging parameters, clear the option
to limit data points.

b Right-click the connection line to the Load Voltage scope block and select Log selected
signals.
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The logging badge  marks the signal in the model.
3 Simulate the model and view the results in the Simulation Data Inspector.

%% Simulate baseline model
sim(baselineModel)

%% Get Simulation Data Inspector run IDs for 
runIDs = Simulink.sdi.getAllRunIDs;
runID = runIDs(end);
run = Simulink.sdi.getRun(runID);
signal1 = run.getSignalByIndex(1);
% run.signalCount
signal1.checked = true;
Simulink.sdi.view

As needed, press the spacebar on your keyboard to fit the Simulation Data Inspector plot to view.
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The baseline simulation results are as expected for the full-wave bridge rectifier load voltage.
4 The Simscape HDL Workflow Advisor cannot convert nonlinear networks to HDL Code. Before

running the advisor, identify and replace blocks that cause your network to be nonlinear. To
identify the blocks, use the simcape.findNonlearBlocks function.

simscape.findNonlinearBlocks(baselineModel)

Found network that contains nonlinear equations in the following blocks:
    'ssc_bridge_rectifier/AC Voltage Source'

The number of linear or switched linear networks in the model is 0.
The number of nonlinear networks in the model is 1.

ans =

  1×1 cell array

    {'ssc_bridge_rectifier/AC Voltage Source'}

The model contains an AC Voltage Source block, a periodic source that yields nonlinear
equations.

5 You can replace the Simscape periodic source by adding a Simscape Controlled Voltage Source
block in the Simscape network with a Simulink Sine Wave block outside the network. An added
benefit is that you can configure the frequency and amplitude for the Sine Wave block at run time
during real-time simulation.

a Delete the AC Voltage Source block.
b Add a Sine Wave block from the Simulink Sources library.
c Add a Simulink-PS Converter block from the Simscape Utilities library.
d Add a Controlled Voltage Source block from the Simscape / Foundation Library / Electrical /

Electrical Sources library.
e Connect the Sine Wave block to the Simulink-PS Converter block and the Simulink-PS

Converter block to the Controlled Voltage Source block.
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6 The Simulink model is configured for variable-step simulation. If you specify the Sine Wave block
sample time as -1, for inheriting the sample time, the simulation generates a warning. Instead,
specify the sample time for the Sine Wave as 0 by using a workspace variable that you can later
adjust for improving simulation speed or accuracy. The removed AC Voltage Source block has a
Peak amplitude of sqrt(2)*120 V and a Frequency of 60 Hz.

Configure the Sine Wave block.

a Define the sample time in the workspace.

Ts = 1e-5;
b Set the Amplitude parameter to sqrt(2)*120.
c Set the Frequency (rad/sec) parameter to 60*2*pi.
d Set the Sample time parameter to Ts.

7 Ensure that there are no blocks that cause your network to be nonlinear.

% Simulate
sim(baselineModel)

% Check for nonlinear blocks
simscape.findNonlinearBlocks(baselineModel)

The number of linear or switched linear networks in the model is 1.

ans =

  0×0 empty cell array

The model contains only blocks that yield linear or switched linear equations.
8 Simulate the model and compare the results to the baseline results in the Simulation Data

Inspector.
% Get Simulation Data Inspector run IDs 
runIDs = Simulink.sdi.getAllRunIDs;
runBaseline = runIDs(end - 1);
runSwitchedLinear = runIDs(end);

% Open the Simulation Data Inspector
Simulink.sdi.view
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compBaseline1 = Simulink.sdi.compareRuns(runBaseline,...
    runSwitchedLinear);

The results are similar to the baseline results.
9 To examine the progress of the Simscape HDL Workflow Advisor later, add and connect a Digital

Clock block from the Simulink Sources library and a Display block from the Simulink / Sinks
library, as shown in the figure. For the Digital Clock, specify Ts for Sample time parameter.
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10 The model is currently simulating in continuous time using a variable-step solver. For real time-
simulation, a fixed-step solver is required for discrete-time simulation. Sample time colors and
annotations help you to determine if your model contains any continuous settings. To turn on
sample time colors and annotations, in the Simulink model window, select Display > Sample
Time > All.

The model diagram updates and the Sample Time Legend displays.
11 Configure the model for real-time simulation.

a Configure the Simulink model for fixed-step, fixed-cost simulation. In the Model
Configuration Parameters, for the Solver parameters, set:

• Set Type to Fixed-step.
• Set Solver to discrete (no continuous states).

b Configure the Simscape network for fixed-step, fixed-cost simulation. For the Solver
Configuration block:

• Select Use local solver.
• Ensure that Solver type is set to Backward Euler.
• Specify Ts for the Sample time.

12 Simulate the model and compare the results to the baseline results in the Simulation Data
Inspector.
% Simulate
sim(baselineModel)

% Get Simulation Data Inspector run IDs 
runIDs = Simulink.sdi.getAllRunIDs;
runBaseline = runIDs(end - 2);
runRealTime = runIDs(end);

% Open the Simulation Data Inspector
Simulink.sdi.view

compBaseline1 = Simulink.sdi.compareRuns(runBaseline,...
    runRealTime);
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The results are similar to the baseline results.

Generate HDL Code by Using the Simscape HDL Workflow Advisor

Generate HDL code by running the Simscape HDL Workflow Advisor either on the Simscape model
that you prepared by stepping through “Model Preparation” on page 11-139 or on a Simscape model
that is already prepared for code generation.

1 Rename the model.

• To continue working with the model that you prepared for HDL code generation, rename the
model ssc_model.

• To open and use a model that is already prepared for HDL code generation, at the MATLAB
command prompt, enter

open_system('ssc_bridge_rectifier_hdl')

Save the model to a local directory as ssc_model.
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2 Run the Simscape HDL Workflow Advisor.

sschdladvisor('ssc_model')

The Simscape HDL Workflow Advisor opens.
3 Run the code generation compatibility checks.

a Select Code generation compatibility > Check solver configuration and then click Run
this task.

b Select Check switched linear and then click Run this task.

The advisor reports when your model has passed each of these checks.
4 Extract the state-space coefficients. Select State-space conversion > Get state-space

parameters and then click Run this task. The conversion can take some time. The Display
block in the model window shows the elapsed simulation time.

After running the task, the advisor displays a summary of the state-space representation and a
table of parameters.

• Number of states: 5
• Number of inputs: 1
• Number of outputs: 1
• Number of modes: 7
• Discrete sample time: 1e-05

Parameter Parameter size
A 5 x 5 x 7
B 5 x 1 x 7
F0 5 x 1 x 7
C 1 x 5 x 7
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D 1 x 1 x 7
Y0 1 x 1 x 7

The size of the state, mode, and parameter data helps you estimate how much of the FPGA
resources are required to deploy the model. The higher the values, the more FPGA resources are
required. The input and output data indicate the number and type of I/O connections needed for
real-time deployment and visualization.

5 Generate an HDL implementation of your model. Select Implementation model generation >
Generate implementation model and then click Run this task.

When the implementation model is generated, the advisor reports that the task is passed and
displays a link to the generated implementation model, which is named
gmStateSpaceHDL_ssc_model.

6 Open the generated implementation model by clicking the provided link.

The model contains blocks labeled:

• Subsystem — Simulink subsystem that contains the prepared model and any signal routing
that the Simscape HDL Workflow Advisor adds. For this model, the advisor adds a Goto block
that routes the Sine Wave block input to the HDL Subsystem.

• T — From block that routes the Sine Wave block input from the Subsystem block to the
HDL Subsystem block.
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• Rate Transition1 — Handles the transfer of data between blocks operating at different rates.
• Data Type Conversion1 — Converts double data types to single data types, as is required for

HDL code generation.
• HDL Subsystem —Simulink subsystem that contains an HDL code generation compatible

version of your Simscape network. For this model, the advisor adds a Goto block that routes
the Sine Wave block input to the HDL Subsystem block.

• Scope — Displays the load voltage.
7 Prepare the HDL Subsystem for a simulation comparison to the baseline results:

a Delete the T From block.
b Copy and paste the Sine Wave block from the Subsystem block into the top-level model.
c Connect the Sine Wave block to the Rate Transition1 block.
d Delete the Subsystem block, which contains the baseline model.
e Enable data logging to the Simulation Data Inspector for the signal that goes to the Scope

block.

8 To ensure that the HDL subsystem corresponds to your original Simscape model, simulate the
model and compare the results to the baseline simulation results.
% Simulate
sim('gmStateSpaceHDL_ssc_model')

% Get Simulation Data Inspector run IDs 
runIDs = Simulink.sdi.getAllRunIDs;
runBaseline = runIDs(end - 3);
runHDLImplementation = runIDs(end);

% Open the Simulation Data Inspector
Simulink.sdi.view

compBaseline1 = Simulink.sdi.compareRuns(runBaseline,...
    runHDLImplementation);
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The results are similar to the baseline results. Your Simscape model is now converted to an HDL
code generation compatible implementation.

9 Generate HDL code from the implementation:

a In the model configuration parameters, for HDL Code Generation Report, select the
Generate traceability report and the Generate resource utilization report options.

b Run the hdlsetup function.

hdlsetup('gmStateSpaceHDL_ssc_model')
c Save the model and subsystem parameter settings.

hdlsaveparams('gmStateSpaceHDL_ssc_model');

%% Set Model 'gmStateSpaceHDL_ssc_model' HDL parameters
hdlset_param('gmStateSpaceHDL_ssc_model', 'FloatingPointTargetConfiguration', ...
   hdlcoder.createFloatingPointTargetConfig('NativeFloatingPoint'));
hdlset_param('gmStateSpaceHDL_ssc_model', 'MaskParameterAsGeneric', 'on');
hdlset_param('gmStateSpaceHDL_ssc_model', 'Oversampling', 100);
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% Set SubSystem HDL parameters
hdlset_param('gmStateSpaceHDL_ssc_model/HDL Subsystem', 'FlattenHierarchy', 'on');

d Save validation model generation settings.

HDLmodelname = 'gmStateSpaceHDL_ssc_model';
hdlset_param(HDLmodelname, 'GenerateValidationModel', 'on');

e Generate HDL code.

makehdl('gmStateSpaceHDL_ssc_model/HDL Subsystem')

### Generating HDL for 'gmStateSpaceHDL_ssc_model/HDL Subsystem'.
### Using the config set for model gmStateSpaceHDL_ssc_model ...
    for HDL code generation parameters.
### Starting HDL check.
### The code generation and optimization options you ...
    have chosen have introduced additional pipeline delays.
### The delay balancing feature has automatically inserted ...
    matching delays for compensation.
### The DUT requires an initial pipeline setup latency. ...
    Each output port experiences these additional delays.
### Output port 0: 1 cycles.
### Clock-rate pipelining results can be diagnosed by running this script:...
    C:\Temp\hdlsrc\gmStateSpaceHDL_ssc_model\highlightClockRatePipelining.m
### One or more feedback loops in the model are inhibiting optimizations. ...
    To highlight these loops in your model, click the following MATLAB ... 
    script: C:\Temp\hdlsrc\gmStateSpaceHDL_ssc_model\highlightFeedbackLoop.m
### To clear highlighting, click the following MATLAB ...
    script: C:\Temp\hdlsrc\gmStateSpaceHDL_ssc_model\clearhighlighting.m
### Generating new validation model: gm_gmStateSpaceHDL_ssc_model_vnl.
### Validation model generation complete.
### Begin VHDL Code Generation for 'gmStateSpaceHDL_ssc_model'.
### MESSAGE: The design requires 100 times faster clock ...
    with respect to the base rate = 2e-07.
### Working on gmStateSpaceHDL_ssc_model/HDL Subsystem/HDL Algorithm/Mode ...
    Selection/Mode Vector To Index/Subsystem1 ...
    as C:\Temp\hdlsrc\gmStateSpaceHDL_ssc_model\Subsystem1.vhd.
### Working on gmStateSpaceHDL_ssc_model/HDL Subsystem/nfp_mul_comp ...
    as C:\Temp\hdlsrc\gmStateSpaceHDL_ssc_model\nfp_mul_comp.vhd.
### Working on gmStateSpaceHDL_ssc_model/HDL Subsystem/nfp_add_comp ...
    as C:\Temp\hdlsrc\gmStateSpaceHDL_ssc_model\nfp_add_comp.vhd.
### Working on MultiplyAndAdd_2_entries ...
    as C:\Temp\hdlsrc\gmStateSpaceHDL_ssc_model\MultiplyAndAdd_2_entries.vhd.
### Working on MultiplyAndAdd_1_entries ...
    as C:\Temp\hdlsrc\gmStateSpaceHDL_ssc_model\MultiplyAndAdd_1_entries.vhd.
### Working on gmStateSpaceHDL_ssc_model/HDL Subsystem/nfp_uminus_comp ...
    as C:\Temp\hdlsrc\gmStateSpaceHDL_ssc_model\nfp_uminus_comp.vhd.
### Working on gmStateSpaceHDL_ssc_model/HDL Subsystem/nfp_relop_comp ...
    as C:\Temp\hdlsrc\gmStateSpaceHDL_ssc_model\nfp_relop_comp.vhd.
### Working on HDL Subsystem_tc ...
    as C:\Temp\hdlsrc\gmStateSpaceHDL_ssc_model\HDL_Subsystem_tc.vhd.
### Working on gmStateSpaceHDL_ssc_model/HDL Subsystem ...
    as C:\Temp\hdlsrc\gmStateSpaceHDL_ssc_model\HDL_Subsystem.vhd.
### Generating package file ...
    C:\Temp\hdlsrc\gmStateSpaceHDL_ssc_model\HDL_Subsystem_pkg.vhd.
### Generating HTML files for code generation report ...
    at gmStateSpaceHDL_ssc_model_codegen_rpt.html
### Creating HDL Code Generation Check Report HDL_Subsystem_report.html
### HDL check for 'gmStateSpaceHDL_ssc_model' complete ...
    with 0 errors, 0 warnings, and 3 messages.
### HDL code generation complete.

The HDL code generation report opens and includes any generated errors or warnings. The
report includes a link to the resource utilization report, which describes the resource
requirements for FPGA deployment.

The generated HDL code and validation model are saved in the hdlsrc
\gmStateSpaceHDL_ssc_model\html directory. The generated code is saved as
HDL_Subsystem_tc.vhd.
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To generate HDL code for deployment to a specified target, use the HDL Workflow Advisor.

See Also
Blocks
Digital Clock | Display | Sine Wave

Simscape Blocks
Controlled Voltage Source | Simulink-PS Converter

Functions
hdladvisor | hdlsaveparams | hdlset_param | hdlsetup | makehdl |
simscape.findNonlinearBlocks | sschdladvisor

Related Examples
• “View Sample Time Information” (Simulink)
• “Generate HDL Code for Simscape Models” (HDL Coder)
• “Deploy Simscape™ Plant Models to Speedgoat FPGA I/O Modules” (HDL Coder)
• “Troubleshoot Conversion of Simscape DC Motor Control to HDL-Compatible Simulink Model”

(HDL Coder)
• “Troubleshoot Conversion of Simscape Permanent Magnet Synchronous Motor to HDL-

Compatible Simulink Model” (HDL Coder)
• “View Data with the Simulation Data Inspector” (Simulink)

More About
• “Getting Started with the HDL Workflow Advisor” (HDL Coder)
• “Create and Use Code Generation Reports” (HDL Coder)
• “Hardware-In-The-Loop Simulation Workflow” on page 11-106
• “Real-Time Model Preparation Workflow” on page 11-4
• “Real-Time Simulation Workflow” on page 11-72
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Code Generation

• “About Code Generation from Simscape Models” on page 12-2
• “Reasons for Generating Code” on page 12-3
• “Using Code-Related Products and Features” on page 12-4
• “How Simscape Code Generation Differs from Simulink” on page 12-5
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About Code Generation from Simscape Models
You can use Simulink Coder software to generate standalone C or C++ code from your Physical
Networks models and enhance simulation speed and portability. Certain features of Simulink software
also make use of generated or external code. This section explains code-related tasks you can
perform with your Simscape models.

Code versions of Simscape models typically require fixed-step Simulink solvers, which are discussed
in the Simulink documentation. Some features of Simscape software are restricted when you
translate a model into code. See “How Simscape Code Generation Differs from Simulink” on page 12-
5, as well as “Limitations” on page 7-40.

Note Code generated from Simscape models is intended for rapid prototyping and hardware-in-the-
loop applications. It is not intended for use as production code in embedded controller applications.

Add-on products based on the Simscape platform also support code generation, with some variations
and exceptions described in their respective documentation.
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Reasons for Generating Code
Code generation has many purposes and methods. There are two essential rationales:

• Compiled code versions of Simulink and Simscape models run faster than the original block
diagram models. The time savings can be dramatic.

• An equally important consideration for Simscape models is the standalone implementation of
generated and compiled code. Once you convert part or all of your model to code, you can deploy
the standalone executable program on virtually any platform, independently of MATLAB.

Converting a model or subsystem to code also hides the original model or subsystem.
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Using Code-Related Products and Features
With Simulink, Simulink Coder, and Simulink Real-Time software, using several code-related
technologies, you can link existing code to your models and generate code versions of your models.

Code-Related Task Component or Feature
Link existing code written in C or other
supported languages to Simulink models

Simulink S-functions to generate customized blocks

Speed up Simulink simulations Accelerator mode
Rapid Accelerator mode

Generate standalone fixed-step code from
Simulink models

Simulink Coder software

Generate variable-step code from Simulink
models, well-suited for batch or Monte Carlo
simulations

Simulink Coder Rapid Simulation Target (RSim)

Convert Simulink model to code and compile
and run it on a target PC

Simulink Coder and Simulink Real-Time software
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How Simscape Code Generation Differs from Simulink

In this section...
“Simscape and Simulink Code Generated Separately” on page 12-5
“Compiler and Processor Architecture Requirements” on page 12-5
“Precompiled Libraries Provided for Selected Compilers” on page 12-5
“Simscape Code Reuse Not Supported” on page 12-5
“Tunable Parameters Not Supported” on page 12-6
“Simscape Run-Time Parameter Inlining Override of Global Exceptions” on page 12-6

In general, using the code generated from Simscape models is similar to using code generated from
regular Simulink models. However, there are certain differences.

Simscape and Simulink Code Generated Separately
Simulink Coder software generates code from the Simscape blocks separately from the Simulink
blocks in your model. The generated Simscape code does not pass through model.rtw or the Target
Language Compiler. All the code generated from a single model resides in the same directory,
however.

Compiler and Processor Architecture Requirements
To generate and execute Simscape code, you must have a compiler and a processor that support:

• 64-bit precision floating-point arithmetic
• 32-bit integer size

For details on supported compiler versions, see

https://www.mathworks.com/support/compilers/current_release

Precompiled Libraries Provided for Selected Compilers
Simscape software and its add-on products provide static runtime libraries precompiled for compilers
supported by Simulink Coder software. For details, see

https://www.mathworks.com/support/compilers/current_release

For all other compilers, the static runtime libraries needed by code generated from Simscape models
are compiled once per model during the code generation build process.

Simscape Code Reuse Not Supported
Reusable subsystems in Simulink reuse code that is generated once from the subsystem. You cannot
generate reusable code from subsystems containing Simscape blocks.
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Tunable Parameters Not Supported
A tunable parameter is a Simulink run-time parameter that you can change while the simulation is
running. Simscape blocks do not support tunable parameters in either simulations or generated code.

Simscape Run-Time Parameter Inlining Override of Global Exceptions
If you choose to enable parameter inlining for code generated from a Simscape model, the software
inlines all its run-time parameters. If you choose to make some of the global Simscape block
parameters exceptions to inlining, the exceptions are ignored. You can change global tunable
parameters only by regenerating code from the model.
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Data Logging

• “About Simulation Data Logging” on page 13-2
• “Enable Data Logging for the Whole Model” on page 13-4
• “Log Data for Selected Blocks Only” on page 13-5
• “Data Logging Options” on page 13-6
• “Log and Plot Simulation Data” on page 13-8
• “Log Simulation Statistics” on page 13-12
• “Log and View Simulation Data for Selected Blocks” on page 13-15
• “Log, Navigate, and Plot Simulation Data” on page 13-18
• “About the Simscape Results Explorer” on page 13-21
• “Plot Simulation Data in Different Units” on page 13-27
• “Use Custom Units to Plot Simulation Data” on page 13-31
• “View Sparkline Plots of Simulation Data” on page 13-34
• “Stream Logging Data to Disk” on page 13-37
• “Saving and Retrieving Logged Simulation Data” on page 13-40
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About Simulation Data Logging
In this section...
“Suggested Workflows” on page 13-2
“Limitations” on page 13-3

Suggested Workflows
You can log simulation data to the workspace, or to a temporary file on disk, for debugging and
verification. Data logging lets you analyze how internal block variables change with time during
simulation. For example, you might want to see that the pressure in a hydraulic cylinder is above
some minimum value or compare it against the pump pressure. If you log simulation data, you can
later query, plot, and analyze it without rerunning the simulation.

There are two methods of simulation data logging: you can store the data directly in a workspace
variable, or you can stream data to a temporary file on disk and have the workspace variable point to
that temporary file. For more information on the second method, see “Stream Logging Data to Disk”
on page 13-37. In either case, you interact with the logged simulation data through the simulation
log variable.

Simulation data logging can replace connecting sensors and scopes to track simulation data. These
blocks increase model complexity and slow down simulation. “Log and Plot Simulation Data” on page
13-8 shows how you can log and plot simulation data instead of adding sensors to your model. It
also shows how you can print the complete logging tree for a model and plot simulation results for a
selected variable.

You can log data either for the whole model, or on a block-by-block basis. In the second case, the
workspace variable will contain simulation data for selected blocks only. To log data for selected
blocks only, you have to:

• Set the logging configuration parameter
• Select the blocks in your model

You can perform these two steps in any order. For more information, see “Log Data for Selected
Blocks Only” on page 13-5.

After running the simulation, you can use the Simscape Results Explorer tool to navigate and plot the
data logging results.

For additional information on how you can query, plot, and analyze data by accessing the simulation
log variable, see the reference pages for the classes simscape.logging.Node,
simscape.logging.Series, and their associated methods.

You can also configure your model to automatically record Simscape logging data, along with the rest
of the simulation data obtained from a model run, using the Simulation Data Inspector. This way, you
can view and analyze the data while the simulation is running. Set up your model to log simulation
data, either for the whole model or on a block-by-block basis. Enable data streaming by selecting the
Record data in Simulation Data Inspector check box on the Simscape pane of the Configuration
Parameters dialog box. When you simulate the model, as soon as the streamed data becomes
available, the Simulation Data Inspector button in the model toolbar highlights. Open the Simulation
Data Inspector to view the data during simulation and to compare data for different simulation runs.
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For detailed information on how to configure and use the Simulation Data Inspector, see “Inspect and
Analyze Simulation Results” (Simulink).

If you have a Parallel Computing Toolbox™ license, you can make your model simulation and data
logging compatible with the parfor command by selecting the Single simulation output check box
on the Data Import/Export pane of the Configuration Parameters dialog box. In this case, Simscape
log data will be part of the single output object instead of being stored as a separate workspace
variable. For more information, see “Single simulation output” (Simulink).

Limitations
Simulation data logging is not supported for:

• Model reference
• Generated code
• Accelerator mode
• Rapid accelerator mode
• Partitioning local solver

If you use the sim command with a 'StopTime' name-value pair, the Simscape logging results are
not updated.

See Also

Related Examples
• “Log, Navigate, and Plot Simulation Data” on page 13-18
• “Log and View Simulation Data for Selected Blocks” on page 13-15
• “Log and Plot Simulation Data” on page 13-8
• “Log Simulation Statistics” on page 13-12

More About
• “Data Logging Options” on page 13-6
• “Stream Logging Data to Disk” on page 13-37
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Enable Data Logging for the Whole Model
Using data logging is a best practice for Simscape models because it provides access to important
simulation and analysis tools. Therefore, when you create a model by using the ssc_new function or
any of the Simscape model templates, data logging for the whole model is turned on automatically.

However, for models created using other methods, simulation data is not logged by default. To turn
on the data logging for a model, use the Log simulation data configuration parameter.

1 In the model window, open the Modeling tab and click Model Settings. The Configuration
Parameters dialog box opens.

2 In the Configuration Parameters dialog box, in the left pane, select Simscape. The right pane
displays the Log simulation data option, which is set to None, by default.

3 From the drop-down list, select All, then click OK.
4 Simulate the model. This creates a workspace variable named simlog (as specified by the

Workspace variable name parameter), which contains the simulation data.

For information on how to access and use the data stored in this variable, see the related
examples listed below. For information on additional data logging configuration options, see
“Data Logging Options” on page 13-6.

See Also

Related Examples
• “Log, Navigate, and Plot Simulation Data” on page 13-18
• “Log and Plot Simulation Data” on page 13-8
• “Log Simulation Statistics” on page 13-12

More About
• “Data Logging Options” on page 13-6
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Log Data for Selected Blocks Only
Instead of logging the simulation data for the whole model, you can log data just for the selected
blocks.

1 Set the logging configuration parameter to enable simulation data logging on a block-by-block
basis.

In the model window, open the Modeling tab and click Model Settings. In the Configuration
Parameters dialog box, in the left pane, select Simscape, then set the Log simulation data
parameter to Use local settings. Click OK.

2 Select the blocks in your model. You can do this before or after setting the logging configuration
parameter.

For each block that you want to select for data logging, right-click the block. From the context
menu, select Simscape > Log simulation data. A check mark appears in front of the Log
simulation data option.

3 Simulate the model. When the simulation is done, the simulation data log contains only the data
from the selected blocks.

To stop logging data for a previously selected block, right-click it and select Simscape > Log
simulation data again to remove the check mark.

If you set the Log simulation data parameter to All, the simulation log will contain data from the
whole model, regardless of the block selections. Setting the Log simulation data parameter to None
disables data logging for the whole model.

See Also

Related Examples
• “Log and View Simulation Data for Selected Blocks” on page 13-15

More About
• “Data Logging Options” on page 13-6
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Data Logging Options
When you set the Log simulation data configuration parameter to All or Use local settings,
other options in the Data Logging group box become available.

• Log simulation statistics — Select this check box if you want to access and analyze information
on zero crossings during simulation. By default, this check box is not selected and the zero-
crossing data is not logged. For more information on using this check box, see “Log Simulation
Statistics” on page 13-12.

• Record data in Simulation Data Inspector — Use this check box if you want to stream the
logged simulation data to Simulation Data Inspector, to be able to view it during simulation. By
default, this check box is not selected. For more information on how to configure and use the
Simulation Data Inspector, see “Inspect and Analyze Simulation Results” (Simulink).

• Open viewer after simulation — Select this check box if you want to open Simscape Results
Explorer, which is an interactive tool that lets you navigate and plot the simulation data logging
results. By default, this check box is not selected. For more information, see “About the Simscape
Results Explorer” on page 13-21.

If the Record data in Simulation Data Inspector check box is also selected, then the
Simulation Data Inspector opens instead of the Simscape Results Explorer.

• Workspace variable name — Specifies the name of the workspace variable that stores the
simulation data. Subsequent simulations overwrite the data in the simulation log variable. If you
want to compare data from two models or two simulation runs, use different names for the
respective log variables. The default variable name is simlog.

• Decimation — Use this parameter to limit the number of data points saved, by outputting data
points for every nth time step, where n is the decimation factor. The default is 1, which means that
all points are logged. Specifying a different value results in the first step, and every nth step
thereafter, being logged. For example, specifying 2 logs data points for every other time step,
while specifying 10 logs data points for just one in ten steps.

• Limit data points — Use this check box in conjunction with the Data history (last N steps)
parameter to limit the number of data points saved. The check box is selected by default. If you
clear it, the simulation log variable contains the data points for the whole simulation, at the price
of slower simulation speed and heavier memory consumption.

• Data history (last N steps) — Specify the number of simulation steps to limit the number of data
points output to the workspace. The simulation log variable contains the data points
corresponding to the last N steps of the simulation, where N is the value that you specify for the
Data history (last N steps) parameter. You have to select the Limit data points check box to
make this parameter available. The default value logs simulation data for the last 5000 steps. You
can specify any other positive integer number. If the simulation contains fewer steps than the
number specified, the simulation log variable contains the data points for the whole simulation.

Saving data to the workspace can slow down the simulation and consume memory. To avoid this, you
can use either the Decimation parameter, or Limit data points in conjunction with Data history
(last N steps), or both methods, to limit the number of data points saved. The two methods work
independently from each other and can be used separately or together. For example, if you specify a
decimation factor of 2 and keep the default value of 5000 for the Data history (last N steps)
parameter, your workspace variable will contain downsampled data from the last 10,000 time steps in
the simulation.

Another way to reduce memory consumption is to enable data streaming to disk, as described in
“Stream Logging Data to Disk” on page 13-37.
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Note The Output options parameter, under Additional parameters on the Data Import/Export
pane of the Configuration Parameters dialog box, also affects which data points are logged. For more
information, see “Model Configuration Parameters: Data Import/Export” (Simulink).

After changing your data logging preferences, rerun the simulation to generate a new data log.

See Also

Related Examples
• “Enable Data Logging for the Whole Model” on page 13-4
• “Log Data for Selected Blocks Only” on page 13-5

More About
• “About Simulation Data Logging” on page 13-2
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Log and Plot Simulation Data
This example shows how you can log and plot simulation data instead of adding sensors to your
model.

The model shown represents a permanent magnet DC motor.

This model is very similar to the Permanent Magnet DC Motor example, but, unlike the example
model, it does not include the Sensing unit w (Ideal Rotational Motion Sensor and PS-Simulink
Converter block) along with the Motor RPM scope. For a detailed description of the Permanent
Magnet DC Motor example, see “Evaluating Performance of a DC Motor”.

1 Build the model, as shown in the preceding illustration.
2 To enable data logging, open the Configuration Parameters dialog box, in the left pane, select

Simscape, then set the Log simulation data parameter to All and click OK.
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3 Simulate the model. This creates a workspace variable named simlog (as specified by the
Workspace variable name parameter), which contains the simulation data.

4 The simlog variable has the same hierarchy as the model. To see the whole variable structure,
at the command prompt, type:

simlog.print

This command prints the whole data tree.

     mlog_ex_dcmotor1
     +-Electrical_Reference2
     | +-V
     |   +-v
     +-Friction_Mr
     | +-C
     | | +-w
     | +-R
     | | +-w
     | +-t
     | +-w
     +-L
     | +-i
     | +-i_L
     | +-n
     | | +-v
     | +-p
     | | +-v
     | +-v
     +-Load_Torque
     | +-C
     | | +-w
     | +-R
     | | +-w
     | +-S
     | +-t
     | +-w
     +-Mechanical_Rotational_Reference
     | +-W
     |   +-w
     +-Mechanical_Rotational_Reference1
     | +-W
     |   +-w
     +-Motor_Inertia_J
     | +-I
     | | +-w
     | +-t
     | +-w
     +-Rotational_Electromechanical_Converter
     | +-C
     | | +-w
     | +-R
     | | +-w
     | +-i
     | +-n
     | | +-v
     | +-p
     | | +-v
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     | +-t
     | +-v
     | +-w
     +-Rotor_ResistanceR
     | +-i
     | +-n
     | | +-v
     | +-p
     | | +-v
     | +-v
     +-x1_5V
       +-i
       +-n
       | +-v
       +-p
       | +-v
       +-v

5 Every node that represents an Across, Through, or internal block variable contains series data.
To get to the series, you have to specify the complete path to it through the tree, starting with
the top-level variable name. For example, to get a handle on the series representing the angular
velocity of the motor, type:
s1 = simlog.Rotational_Electromechanical_Converter.R.w.series;

From here, you can access the values and time vectors for the series and analyze them.
6 You do not have to isolate series data to plot its values against time, or against another series.

For example, to see how the motor speed (in revolutions per minute) changes with time, type:
plot(simlog.Rotational_Electromechanical_Converter.R.w,'units','rpm')

7 Compare this figure to the RPM scope display in the Permanent Magnet DC Motor example. The
results are exactly the same.

8 To plot the motor torque against its angular velocity, in rpm, and add descriptive axis names,
type:
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plotxy(simlog.Rotational_Electromechanical_Converter.R.w,simlog.Motor_Inertia_J.t,...
   'xunit','rpm','xname','Angular velocity','yname','Torque')

For more information on plotting logged simulation data, see the simscape.logging.plot and
simscape.logging.plotxy reference pages.
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Log Simulation Statistics
This example shows how you can access and analyze information on zero crossings during simulation.
By default, the zero-crossing data is not logged. If you select the Log simulation statistics check
box, the simulation log variable contains an additional SimulationStatistics node for each block
that can produce zero crossings, at the price of slower simulation speed and heavier memory
consumption.

1 Open the Mechanical System with Translational Hard Stop example model by typing
ssc_mechanical_system_translational_hardstop in the MATLAB Command Window.

2 Open the Configuration Parameters dialog box and then, in the left pane, select Simscape. You
can see that this example model already has data logging for the whole model enabled, as well as
simulation statistics, and that the workspace variable name is
simlog_ssc_mechanical_system_translational_hardstop.

3 Simulate the model. This creates a workspace variable named
simlog_ssc_mechanical_system_translational_hardstop (as specified by the
Workspace variable name parameter), which contains the simulation data. Because you
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selected the Log simulation statistics check box, the workspace variable contains additional
nodes that represent zero-crossing data.

4 The simlog variable has the same hierarchy as the model. To see the whole variable structure,
at the command prompt, type:

simlog_ssc_mechanical_system_translational_hardstop.print

This command prints the whole data tree.

     ssc_mechanical_system_translational_hardstop
     +-Damper_M1
     | +-C
     | | +-v
     | +-R
     | | +-v
     | +-f
     | +-v
     +-Damper_M2
     | +-C
     | | +-v
     | +-R
     | | +-v
     | +-f
     | +-v
     +-MTRef_DM1
     | +-V
     |   +-v
     +-MTRef_DM2
     | +-V
     |   +-v
     +-MTRef_VS
     | +-V
     |   +-v
     +-Mass_1
     | +-M
     | | +-v
     | +-f
     | +-v
     +-Mass_2
     | +-M
     | | +-v
     | +-f
     | +-v
     +-Sensor_M1
     | +-Ideal_Translational_Motion_Sensor
     | | +-C
     | | | +-v
     | | +-P
     | | +-R
     | | | +-v
     | | +-V
     | | +-f
     | | +-v
     | | +-x
     | +-MTRef
     | | +-V
     | |   +-v
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     | +-PS_Terminator
     | | +-I
     | +-PS_Terminator1
     |   +-I
     +-Sensor_M2
     | +-Ideal_Translational_Motion_Sensor
     | | +-C
     | | | +-v
     | | +-P
     | | +-R
     | | | +-v
     | | +-V
     | | +-f
     | | +-v
     | | +-x
     | +-MTRef
     |   +-V
     |     +-v
     +-Spring_M1
     | +-C
     | | +-v
     | +-R
     | | +-v
     | +-f
     | +-v
     | +-x
     +-Translational_Hard_Stop
     | +-C
     | | +-v
     | +-R
     | | +-v
     | +-SimulationStatistics
     | | +-zc_1
     | | | +-crossings
     | | | +-values
     | | +-zc_2
     | |   +-crossings
     | |   +-values
     | +-f
     | +-v
     | +-x
     +-Velocity_Source
       +-C
       | +-v
       +-R
       | +-v
       +-S
       +-f
       +-v

5 Under the Translational_Hard_Stop node, there is a node called SimulationStatistics,
which contains zero-crossing information. This means that Translational Hard Stop is the only
block in the model that can generate zero-crossings during simulation.

6 You can access and analyze this data similar to other data that is logged to workspace during
simulation. For more information, see simscape.logging.Node and
simscape.logging.Series reference pages.
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Log and View Simulation Data for Selected Blocks
This example shows how you can set your model to log simulation data for selected blocks only and
how to view simulation data using Simscape Results Explorer.

1 Open the Permanent Magnet DC Motor example model by typing ssc_dcmotor in the MATLAB
Command Window. Double-click the DC Motor subsystem to open it.

2 Open the Configuration Parameters dialog box and then, in the left pane, select Simscape. This
example model has data logging for the whole model enabled. To enable data logging on a block-
by-block basis, set the Log simulation data parameter to Use local settings and click OK.

3 Select the blocks for data logging. Right-click the Rotational Electromechanical Converter block.
From the context menu, select Simscape > Log simulation data .
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After you select a block for data logging, a check mark appears in front of the Log simulation
data option in the context menu for that block.

4 Right-click the Inertia block and select it for data logging, as described in the previous step.
5 Simulate the model. This creates a workspace variable named simlog_ssc_dcmotor (as

specified by the Workspace variable name parameter), which contains the simulation data for
selected blocks only.

6 To open the Simscape Results Explorer, right-click one of the blocks previously selected for data
logging, for example, the Rotational Electromechanical Converter block. From the context menu,
select Simscape > View simulation data > simlog_ssc_dcmotor.

Note If you right-click a block that has not been selected for simulation data logging, for
example, the Load Torque block, the View simulation data option is not available.

If you change the name of the log variable between simulation runs, the context menu lists the
names of all the log variables associated with the block. For example, to compare data from two
simulation runs, you can use different variable names (such as simlog1 and simlog2). Open a
Simscape Results Explorer window with simlog1 results, then unlink it from the session and
open another window with simlog2 results. For more information, see “About the Simscape
Results Explorer” on page 13-21.

The Simscape Results Explorer window opens, with the
Rotational_Electromechanical_Converter node already selected in the left pane, and all
the node plots for this block displayed in the right pane. You can see that it contains simulation
data only for the two selected blocks, Rotational Electromechanical Converter and Inertia.
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See Also

Related Examples
• “Log, Navigate, and Plot Simulation Data” on page 13-18
• “Plot Simulation Data in Different Units” on page 13-27

More About
• “About Simulation Data Logging” on page 13-2
• “About the Simscape Results Explorer” on page 13-21
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Log, Navigate, and Plot Simulation Data
This example shows the basic workflow for logging simulation data for the whole model and then
navigating and plotting the logged data using Simscape Results Explorer.

1 Open the Permanent Magnet DC Motor example model by typing ssc_dcmotor in the MATLAB
Command Window.

2 Open the Configuration Parameters dialog box and then, in the left pane, select Simscape. You
can see that this example model already has data logging for the whole model enabled, as well as
simulation statistics, and that the workspace variable name is simlog_ssc_dcmotor. Select the
Open viewer after simulation check box and click OK.

3 Simulate the model. When the simulation is done, the Simscape Results Explorer window opens.
In the left pane, it contains the simulation log tree hierarchy, which corresponds to the model
hierarchy.

13 Data Logging

13-18

matlab:ssc_dcmotor


4 When you click a node in the left pane, the corresponding plots appear in the right pane. Expand
the DC_Motor node, and then click the Rotational_Electromechanical_Converter node to
see all the node plots for this block.
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5 To isolate the plot of the rotor angular velocity series against time, keep expanding the nodes in
the left pane until you get to the series data.

See Also

Related Examples
• “Log and View Simulation Data for Selected Blocks” on page 13-15
• “Plot Simulation Data in Different Units” on page 13-27

More About
• “About Simulation Data Logging” on page 13-2
• “About the Simscape Results Explorer” on page 13-21
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About the Simscape Results Explorer
In this section...
“Selecting Nodes to Plot Data” on page 13-21
“Link to MATLAB Session” on page 13-24
“Link to Block Diagram” on page 13-24

Simscape Results Explorer is an interactive tool that lets you navigate and plot the simulation data
logging results.

When you configure the model to log simulation data (for the whole model or just the selected
blocks), you can make the Simscape Results Explorer window open automatically upon completing a
simulation run by selecting the Open viewer after simulation check box in the Configuration
Parameters dialog box. For more information on this workflow, see “Log, Navigate, and Plot
Simulation Data” on page 13-18.

Another way to open the Simscape Results Explorer window is to right-click a block and, from the
context menu, select Simscape > View simulation data. For more information, see “Log and View
Simulation Data for Selected Blocks” on page 13-15.

Selecting Nodes to Plot Data
When you click a node in the left pane of the Simscape Results Explorer, the corresponding plots
appear in the right pane:

• Clicking a node that represents a block displays plots of all the variables in this block.
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• Clicking a node that represents a variable displays the plot for this variable only.

• In frequency-and-time simulation mode, clicking a node that represents a frequency variable
displays the plots for this variable's instantaneous value, amplitude, offset, and phase. You can
click each of the subnodes to see that data separately. For more information, see “Frequency and
Time Simulation Mode” on page 7-29.
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• To select several variables for side-by-side plot comparison, press CTRL and click multiple nodes.
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Link to MATLAB Session
You can control whether the Simscape Results Explorer window is reused when you rerun the
simulation, or a new window is opened after the next simulation run, by linking and unlinking the
window.

When you first open the Simscape Results Explorer window, it is linked to the current MATLAB
session. This means that when you run a new simulation, the results in the window will be
overwritten. To retain the current results and open a new window after the next simulation, click the

 button located in the toolbar above the left pane. The button appearance changes to  and,
when the new window opens after simulation, that window will be linked to the session. Only one
window can be linked to the session, so if you have multiple windows open, linking one of them (by

clicking its  button) unlinks the previous one.

Link to Block Diagram
The Simscape Results Explorer tool provides direct linking to the block diagram. These links let you
highlight the appropriate block or open the block dialog box, to easily go from a variable listed in the
Simscape Results Explorer tree to the Variables tab in the corresponding block dialog box.
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When you select a node in the Simscape Results Explorer tree, the status panel in the bottom-left
corner of the window contains the following links:

• Description — If the node represents a block or subsystem, displays the block or subsystem
name. If the node represents a variable, displays the descriptive variable name, which is the same
name that appears on the Variables tab in the block dialog box. Clicking the link opens the
corresponding block dialog box.

For example, in the illustration above, the selected node w represents a variable called
Rotational velocity. Clicking the Description link opens the Inertia block dialog box, which
is the parent block for this variable. In the block dialog box, click the Variables tab to see the
Rotational velocity variable.

• Source — If the node represents a variable, displays the name of the parent block for this
variable. Clicking the link highlights the corresponding block in the block diagram, opening the
appropriate subsystem if needed.

In the same example, clicking the Source link opens the DC Motor subsystem and highlights the
Inertia block, which is the parent block for the selected node w.

Tip If the descriptive name of a variable or block is too long to fit into the status panel, it is truncated
with an ellipsis (…). If you hover over the truncated name, the tooltip for the status panel displays the
entire descriptive name.
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See Also

Related Examples
• “Log, Navigate, and Plot Simulation Data” on page 13-18
• “Log and View Simulation Data for Selected Blocks” on page 13-15
• “Plot Simulation Data in Different Units” on page 13-27
• “Use Custom Units to Plot Simulation Data” on page 13-31
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Plot Simulation Data in Different Units
When you display logged simulation data in Simscape Results Explorer, the data along the x-axis is
always time, in seconds. However, you can change the y-axis units directly on the plot.

Each of the plots has a drop-down arrow next to the unit name for the y-axis. When you click this
arrow, a context menu appears containing names of all the units in the unit registry that are
commensurate with the current plot unit, as well as two other options:

• Default — Use the default unit.
• Specify — Type the unit name or expression in a pop-up window and click OK. The specified unit

name or expression must be commensurate with the current plot unit.

Once you select the option you want, the drop-down menu collapses and the plot is redrawn in
specified units.

This example shows how you can plot the data in different units by selecting the unit interactively in
the plot pane.

1 Open the Permanent Magnet DC Motor example model by typing ssc_dcmotor in the MATLAB
Command Window. This example model has data logging enabled for the whole model, with the
Workspace variable name parameter set to simlog_ssc_dcmotor.

2 Simulate the model to log the simulation data.
3 Open the Simscape Results Explorer window and plot the rotational velocity of the Inertia block:

sscexplore(simlog_ssc_dcmotor,'DC_Motor.Inertia.w')
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By default, Simscape Results Explorer plots rotational velocity in rad/s.
4 To plot data in different units, click the arrow under the unit name and then, from the context

menu, select rpm.
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The rotational velocity plot is redrawn in rpm.
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See Also

Related Examples
• “Log, Navigate, and Plot Simulation Data” on page 13-18
• “Log and View Simulation Data for Selected Blocks” on page 13-15
• “Use Custom Units to Plot Simulation Data” on page 13-31

More About
• “About Simulation Data Logging” on page 13-2
• “About the Simscape Results Explorer” on page 13-21
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Use Custom Units to Plot Simulation Data
Simscape Results Explorer has a set of default units for plotting the logged data. This example shows
how you can change to a custom unit; for example, to plot rotations in degrees rather than radians.

1 Create a file named ssc_customlogunits.m and save it anywhere on the MATLAB path. The
file should contain a function called ssc_customlogunits, which returns a cell array of the
units to be used:

function customUnits = ssc_customlogunits()
   customUnits = {'deg/s','deg'};
end

Include only the units you want to customize. For everything else, Simscape Results Explorer will
use the default units.

2 Open the Permanent Magnet DC Motor example model by typing ssc_dcmotor in the MATLAB
Command Window. This example model has data logging enabled for the whole model, with the
Workspace variable name parameter set to simlog_ssc_dcmotor.

3 Simulate the model to log the simulation data.
4 Open the Simscape Results Explorer window and plot the rotational velocity of the Inertia block:

sscexplore(simlog_ssc_dcmotor,'DC_Motor.Inertia.w')
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By default, Simscape Results Explorer plots rotational velocity in rad/s.
5

To switch to custom units, click the Plot options icon  and then, in the Options dialog box,
change Units from Default to Custom and click OK. The rotational velocity plot is redrawn in
deg/s.
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Tip  Use the function pm_getunits to get the full list of available units.

See Also

Related Examples
• “Log, Navigate, and Plot Simulation Data” on page 13-18
• “Log and View Simulation Data for Selected Blocks” on page 13-15
• “Plot Simulation Data in Different Units” on page 13-27

More About
• “About Simulation Data Logging” on page 13-2
• “About the Simscape Results Explorer” on page 13-21
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View Sparkline Plots of Simulation Data
This example shows the basic workflow for viewing sparkline plots of logged simulation data for
selected blocks and variables directly on the model canvas. Before viewing sparkline plots, you must
enable data logging for the whole model, or at least for those blocks where you want to display the
data, and run the simulation.

Note If you log Simscape data as part of the single simulation output, the sparkline plots
functionality is not available. For more information, see “Single simulation output” (Simulink).

1 Open the Permanent Magnet DC Motor example model by typing ssc_dcmotor in the MATLAB
Command Window. This example model has data logging for the whole model enabled.

2 Double-click the DC Motor subsystem to open it.
3 Simulate the model.
4 To enable display of the sparkline plots on the model canvas, select any Simscape block in the

model, for example, the Rotational Electromechanical Converter block. On the Simscape Block
tab at the top of the model window, under Review Results, click Sparkline Plot > Enable
Sparkline Plots. This action adds the check mark next to the Enable Sparkline Plots option,
and you can start selecting blocks to display sparkline plots of logged data for their variables.
Repeatedly clicking a block toggles the display of its sparkline plots on and off.

5 Click the Rotational Electromechanical Converter block again, to toggle its sparkline plots on.
Sparkline plots of the first three variables available for this block are displayed on the canvas,
and the field below the plots shows that 5 more variables are available.

6 To customize which plots are shown on the canvas, click the little wheel symbol in the field below
the plots.
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This action displays a list of all the block variables available, with check marks next to the one
currently plotted.

7 Clear all the check marks and select the last variable, w, instead. Then click anywhere on the
model canvas to close the variable selection box.

As you hover over the field with the variable name on the canvas, it expands into a sparkline plot
of logged simulation data for that variable.

The plot display includes the minimum and maximum values, as well as time and value for the
current cursor position.

8 As you move your cursor past the right edge of the plot, the current value is replaced with the
last value of the variable. Clicking or hovering over the arrow to the right of the sparkline plot
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opens an additional field underneath, which contains a link to the Simscape Results Explorer.
When you click the icon, the Simscape Results Explorer window opens, displaying the
corresponding plot in the right pane, with the appropriate node selected in the left pane.

Tips

• If you select a block for which simulation data is not being logged, it displays No variables
instead of the sparkline plots. Right-click the block, select Simscape > Log simulation data, and
rerun the simulation.

• To clear all plots and start again with a clean canvas, on the Simscape Block tab, click
Sparkline Plot > Remove Sparklines. Then you can select more blocks and variables to display
their sparkline plots.

• Repeatedly selecting the Enable Sparkline Plots option toggles the ability to view the sparkline
plots for the model on or off, as indicated by the check mark. When the check mark is on,
repeatedly clicking a block toggles the display of its sparkline plots on and off.

See Also

Related Examples
• “Log, Navigate, and Plot Simulation Data” on page 13-18
• “Log and View Simulation Data for Selected Blocks” on page 13-15

More About
• “About Simulation Data Logging” on page 13-2
• “About the Simscape Results Explorer” on page 13-21
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Stream Logging Data to Disk
In this section...
“Streaming to Disk and parfor Loop” on page 13-38
“Streaming to Disk with parsim” on page 13-38

When you log simulation data, you can either store the data in a workspace variable, or stream the
data to a temporary file on disk and have the workspace variable point to that temporary file. In
either case, you interact with the logged simulation data through the simulation log variable.

Saving data to the workspace consumes memory. Streaming logged data to disk significantly
increases the data logging capacity, because you are no longer limited by the system memory.

To enable streaming data to disk for all models, on the MATLAB Toolstrip, click Preferences. In the
left pane of the Preferences dialog box, select Simscape, then select the Stream data to temporary
disk directory check box.

When this preference is turned on, the simulation data, in the form of a simlog object generated
during simulation, is stored in an HDF5 file in a temporary folder under your user name. The
workspace variable of type simscape.logging.Node, named as specified by the Workspace
variable name configuration parameter, gets created, but instead of storing all the simulation data it
references the simlog object in the temporary file. The temporary file persists as long as there is a
logging variable name in the workspace that references it.

You view and analyze logged simulation data by accessing the simulation log variable, exactly the
same way as if the simulation data was stored inside it. All the interaction between the workspace
variable and the stored object happens behind the scenes. Therefore, you can use the Simscape
Results Explorer, as well as all the methods associated with the simscape.logging.Node and
simscape.logging.Series classes to query, plot, and analyze logged simulation data.

The following limitations apply when streaming data to disk:
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• The Limit data points and Data history (last N steps) configuration parameters are ignored.
However, you can use the Decimation parameter to limit the number of logged data points. For
more information, see “Data Logging Options” on page 13-6.

• When you pause model simulation and step back and then forward, all the time points are logged
on disk. This is different from storing the data directly in the workspace variable, where the log
data is rolled back in this case.

Streaming to Disk and parfor Loop
If you have a Parallel Computing Toolbox license, then, when you simulate a model inside the parfor
loop, the temporary HDF5 file is generated within the address space of the worker threads. To access
the simulation data outside the parfor loop, export the data and then import the exported file
outside the parfor loop.
parfor i=1:2 
   model = 'ssc_dcmotor' 
   load_system(model); 
   set_param(model, 'SimulationMode', 'normal'); 
   set_param(model, 'SimscapeLogType', 'all', 'SimscapeLogName', 'simlog'); 
   simOut = sim(model, 'ReturnWorkspaceOutputs', 'on'); 

   % save to a different file by appending the index 
   file = ['fileName_' num2str(i) '.h5']; 
   simscape.logging.export(simOut.get('simlog'), file); 
end

% import the exported files 
var = simscape.logging.import('fileName_1.h5');
...
 

Streaming to Disk with parsim
If you have a Parallel Computing Toolbox license, simulating a model with the parsim command
provides additional functionality, compared to using the parfor loop. The following example shows
how you can use the parsim command when streaming logged simulation data to disk.
model = 'ssc_dcmotor';
% Create array of inputs to run multiple simulations
num = 10;
in(1:num) = Simulink.SimulationInput(model);

% Specify any directory where the H5 files will be created for every run
currDir = '/tmp'; % any directory

for i = 1:num
    % This will only work with local pools
    in(i).PostSimFcn = @(x) locHandleSimscapeLTF(model, x, currDir, i); 
end
out = parsim(in);

for idx = 1:numel(out)
    simlog = simscape.logging.import(out(idx).SimscapeFileName);
    sscexplore(name);
end

function newOut = locHandleSimscapeLTF(model, out, dirName, runId)
    % All the logged variables along with simlog should be part of 'newOut' object 
    loggedVars = out.who;
    newOut = struct;
    for i = 1 : numel(loggedVars)
        loggedData = out.(loggedVars{i});
        if isa(loggedData, 'simscape.logging.Node')
            % Specify any file name with .h5 extension
            filename = [model '_simlog_file_' num2str(runId) '.h5']; 
            simscapeFileName = fullfile(dirName, filename);
            
            % Export simlog to H5 file
            simscape.logging.export(loggedData, simscapeFileName);
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            newOut.SimscapeFileName = simscapeFileName;
        else
            newOut.(loggedVars{i}) = out.(loggedVars{i});
        end
    end
end
 

See Also

More About
• “About Simulation Data Logging” on page 13-2
• “Data Logging Options” on page 13-6
• “About the Simscape Results Explorer” on page 13-21
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Saving and Retrieving Logged Simulation Data
In this section...
“Data Logged to Memory” on page 13-40
“Data Logged to Temporary File on Disk” on page 13-40
“Data Recorded in Simulation Data Inspector” on page 13-41

Ways of saving and retrieving logged simulation data depend on the logging method. Each simulation
log has two properties, savable and exportable, that indicate how the data was logged and
therefore, how to save and retrieve it.

Logging
Method

Enabled By Savable Exportable Use

Memory Stream data to
temporary disk
directory preference
is off, Record data
in Simulation Data
Inspector option is
off

1 0 MATLAB save and load
functions, “Workspace Variables
and MAT-Files” (MATLAB)

Temporary File
on Disk

Stream data to
temporary disk
directory preference
is on, Record data
in Simulation Data
Inspector option is
off

0 1 simscape.logging.export
and
simscape.logging.import

Simulation Data
Inspector

Record data in
Simulation Data
Inspector option is
on

0 0 Simulation Data Inspector data
management functions, “Inspect
and Analyze Simulation Results”
(Simulink)

Data Logged to Memory
When you log simulation data to workspace (Stream data to temporary disk directory check box
on the Simscape pane of the Preferences dialog box is off), all the data is stored in the workspace
variable. You can use the regular MATLAB interface to save the workspace variable as a MAT-file and
load a MAT-file into a variable. For more information, see “Workspace Variables and MAT-Files”
(MATLAB).

Data Logged to Temporary File on Disk
When you stream simulation data to disk (Stream data to temporary disk directory check box on
the Simscape pane of the Preferences dialog box is on), the data is stored as a simlog object in a
temporary file, and the workspace variable references the simlog object. The temporary file persists
as long as there is a logging variable name in the workspace that references it. The
simscape.logging.export function saves the logged simulation data to an HDF5 file, other than
the temporary file, for use in a later session. To load the HDF5 file containing the stored simlog
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object back into workspace and associate it with a workspace variable, use the
simscape.logging.import function.

The following restrictions apply:

• When streaming data to disk, you can export and import only the entire simlog object. This is
different from logging data to workspace, where you can save part of the workspace variable
(such as a node in the simlog tree) as a separate MAT-file.

• simscape.logging.export function does not support cross-locale characters in file name.

Data Recorded in Simulation Data Inspector
If you select the Record data in Simulation Data Inspector check box on the Simscape pane of
the Configuration Parameters dialog box for a particular model, this choice overrides the logging
preference. The simlog object has both savable and exportable properties set to 0. You must use
the Simulation Data Inspector data management functions to save and retrieve this data. For more
information, see “Inspect and Analyze Simulation Results” (Simulink).

See Also

More About
• “About Simulation Data Logging” on page 13-2
• “Data Logging Options” on page 13-6
• “Stream Logging Data to Disk” on page 13-37
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Model Statistics

• “Simscape Model Statistics” on page 14-2
• “1-D Physical System Statistics” on page 14-4
• “3-D Multibody System Statistics” on page 14-7
• “1-D/3-D Interface Statistics” on page 14-9
• “View Model Statistics” on page 14-10
• “Access Block Variables Using Statistics Viewer” on page 14-13
• “Model Statistics Available when Using the Partitioning Solver” on page 14-16
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Simscape Model Statistics
Viewing Simscape model statistics is a good way to evaluate the model prior to simulation. Model
statistics provide feedback on the model complexity, so that you can make informed choices about
whether you want to simulate the model in its current configuration or make changes to it. This
approach helps you achieve the desired simulation performance and goals.

Unlike other derived data (such as data logging or simulation statistics), which is generated during
simulation, model statistics is compile-time data that is generated before the model is simulated.
When you generate model statistics, the model must be in a compilable state, that is, it must satisfy
the requirements described in “Model Validation” on page 7-7.

Use model statistics as part of the iterative model building process. For example, after you make a
change to the model, you can view model statistics to answer the following questions:

• Did the change increase the number of variables?
• Does the model have redundant constraints or have I resolved them?
• How many potential zero-crossing signals does the model have?
• Is the circuit high-index, and therefore hard to solve? Did my change have any effect on the index?

The Statistics Viewer analysis tool is available for models containing Simscape blocks and blocks from
add-on products. Depending on the types of blocks in the model, the analysis can produce any or all
of the following statistics categories:

• 1-D Physical System — This node represents aggregate statistics generated from all physical
networks that are associated with blocks from Simscape, Simscape Driveline, Simscape Fluids,
and Simscape Electrical (except the Specialized Power Systems) libraries.

• 3-D Multibody System — This node represents aggregate statistics generated from all physical
networks that are associated with blocks from the Simscape Multibody library.

• 1-D/3-D Interface — This node lists the connections between the two types of physical networks.
It appears only for models that connect blocks from the Simscape Multibody library to Simscape
blocks, or blocks from other add-on products.

Each statistic is generated separately from each topologically distinct physical network of these
blocks and then aggregated to appear as a single statistic in the Statistics Viewer.

The Sources section of the Statistics Viewer window lists variable sources for the selected statistic:

• If you select a connection under the 1-D/3-D Interface statistic category, the Sources section
lists the source and destination for this connection, with links to relevant blocks.

• If you select a statistic with a nonzero value under the 1-D Physical System category, the
Sources section lists all the variables that fall under this statistic.

For each variable, the Source column contains the full path to the variable, starting from the top-
level model, with a link to the relevant block. If you click the link in the Source column, the
corresponding block is highlighted in the block diagram. The Value column contains the name of
the variable, as it would appear in the Variables tab of the block dialog box.
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Updating the Statistics Viewer
Opening the Statistics Viewer does not trigger an automatic block diagram update. For complex
models, a diagram update can last several minutes, and unnecessary diagram updates could lead to
loss of productivity.

When you open the Statistics Viewer, it gets populated with the data from the last simulation or

diagram update. You have to update the data explicitly by clicking the Refresh button ( ).

The status at the bottom of the viewer window displays the timestamp of its last update. If you have
modified the model since the viewer has last been updated, the Refresh button displays a warning

symbol ( ), and the timestamp at the bottom of the viewer window turns red to indicate that the
data in the viewer might not reflect the latest model changes.

If you open a model, and then open the Statistics Viewer before simulating the model, then the viewer
does not contain any data. The Refresh button displays a warning symbol (yellow triangle), and a
message at the top of the viewer window tells you to click the Refresh button to populate the viewer
with data.

See Also

Related Examples
• “View Model Statistics” on page 14-10
• “Access Block Variables Using Statistics Viewer” on page 14-13
• “Model Statistics Available when Using the Partitioning Solver” on page 14-16

More About
• “1-D Physical System Statistics” on page 14-4
• “3-D Multibody System Statistics” on page 14-7
• “1-D/3-D Interface Statistics” on page 14-9
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1-D Physical System Statistics
This node represents aggregate statistics generated from all physical networks that are associated
with blocks from Simscape, Simscape Driveline, Simscape Fluids, and Simscape Electrical libraries,
with the exception of Specialized Power Systems blocks.

Each statistic is generated separately from each topologically distinct physical network of these
blocks and then aggregated to appear as a single statistic.

The individual statistics are:

• Number of variables — This statistic represents the number of variables associated with all 1-D
physical systems in the model. Variables are categorized further as continuous, eliminated, and
discrete variables.

• Number of continuous variables (retained) — This statistic represents the number of
continuous variables associated with all 1-D physical systems in the model. Continuous variables
are those variables whose values vary continuously with time, although some continuous variables
can change values discontinuously after events. Continuous variables are categorized further as
algebraic and differential variables.

This statistic represents the number of continuous variables in the system after variable
elimination. If a system is truly input-output with no dynamics, it is possible to completely
eliminate all variables and, in that case, the number of variables is zero.

• Number of differential variables — This statistic represents the number of differential
variables associated with all 1-D physical systems in the model. Differential variables are
continuous variables whose time derivative appears in one or more system equations. These
variables add dynamics to the system and require the solver to use numerical integration to
compute their values.

This statistic represents the number of differential variables in the model after variable
elimination.

• Number of algebraic variables — This statistic represents the number of algebraic variables
associated with all 1-D physical systems in the model. Algebraic variables are continuous
system variables whose time derivative does not appear in any system equations. These
variables appear in algebraic equations but add no dynamics, and this typically occurs in
physical systems due to conservation laws, such as conservation of mass and energy.

This statistic represents the number of algebraic variables in the model after variable
elimination.

• Number of continuous variables (eliminated) — This statistic represents the number of
eliminated variables associated with all 1-D physical systems in the model. Eliminated variables
are continuous variables that are eliminated by the software and are not used in solving the
system. Eliminated variables are categorized further as algebraic and differential variables.

• Number of differential variables — This statistic represents the number of eliminated
differential variables associated with all 1-D physical systems in the model. Differential
variables are continuous variables whose time derivative appears in one or more system
equations. These variables add dynamics to the system and require the solver to use numerical
integration to compute their values.

This statistic represents the number of differential variables in the model that have been
eliminated.

14 Model Statistics

14-4



• Number of algebraic variables — This statistic represents the number of eliminated
algebraic variables associated with all 1-D physical systems in the model. Algebraic variables
are continuous system variables whose time derivative does not appear in any system
equations. These variables appear in algebraic equations but add no dynamics, and this
typically occurs in physical systems due to conservation laws, such as conservation of mass and
energy.

This statistic represents the number of algebraic variables in the model that have been
eliminated.

• Number of discrete variables — This statistic represents the number of discrete, or event,
variables associated with all 1-D physical systems in the model. Discrete variables are those
variables whose values can change only at specific events. Discrete variables are categorized
further as integer-valued and real-valued discrete variables.

• Number of integer-valued variables — This statistic represents the number of integer-
valued discrete variables associated with all 1-D physical systems in the model. Integer-valued
discrete variables are system variables that take on integer values only and can change their
values only at specific events, such as sample time hits. These variables are typically generated
from blocks that are sampled and run at specified sample times.

• Number of real-valued variables — This statistic represents the number of real-valued
discrete variables associated with all 1-D physical systems in the model. Real-valued discrete
variables are system variables that take on real values and can change their values only at
specific events.

If you select a local solver in the Solver Configuration block, then all continuous variables
associated with that system are discretized and represented as real-valued discrete variables.

• Number of zero-crossing signals — This statistic represents the number of scalar signals that
are monitored by the Simulink zero-crossing detection algorithm. Zero-crossing signals are scalar
functions of states, inputs, and time whose crossing zero indicates discontinuity in the system.
These signals are typically generated from operators and functions that contain discontinuities,
such as comparison operators, abs, sqrt functions, and so on. Times when these signals cross
zero are reported as zero-crossing events. During simulation it is possible for none of these signals
to produce a zero-crossing event or for one or more of these signals to have multiple zero-crossing
events.

• Number of dynamic variable constraints — This statistic represents the number of constraints
involving only dynamic variables and inputs. Such constraints result in high-index differential
algebraic equations (DAEs) and therefore can cause numerical difficulties or slow down your
simulation.

If you select a statistic with a nonzero value, the Sources section lists all the variables that fall under
this statistic. For each variable:

• The Source column contains the full path to the variable, starting from the top-level model, with a
link to the relevant block. If you click the link in the Source column, the corresponding block is
highlighted in the block diagram.

• The Value column contains the name of the variable, as it would appear in the Variables tab of
the block dialog box.

If your model uses a Partitioning local solver, the Statistics Viewer contains additional statistics
specific to this solver type. For more information, see “Model Statistics Available when Using the
Partitioning Solver” on page 14-16.
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See Also

Related Examples
• “View Model Statistics” on page 14-10
• “Access Block Variables Using Statistics Viewer” on page 14-13

More About
• “Simscape Model Statistics” on page 14-2
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3-D Multibody System Statistics
This node represents aggregate statistics generated from all physical networks that are associated
with blocks from the Simscape Multibody library.

Each statistic is generated separately from each topologically distinct physical network of these
blocks and then aggregated to appear as a single statistic.

The individual statistics are:

• Number of bodies (total, excluding ground) — This statistic provides the total number of
bodies present in a mechanical system. This number equals the sum of two types of bodies: rigid
components and flexible bodies. For more information, see the statistic descriptions for these
types of bodies.

• Number of rigidly connected components (excluding ground) — This statistic provides the
number of rigid components present in a mechanical system. Rigid components are subsets of
rigidly connected blocks that represent rigid bodies or rigid frame networks in a model. These
subsets include blocks from the Body Elements library, including the Variable Mass sublibrary, as
well as Rigid Transform blocks.

Rigid connections within a rigid component can include Rigid Transform blocks, but not Weld Joint
blocks. Rigid Transform blocks provide rigid connections between blocks in the same rigid
component. Weld Joint blocks, like all joint blocks, provide connections between blocks in different
rigid components.

This statistic excludes from the count any rigid component that rigidly connects to the World
Frame blocks.

• Number of flexible bodies — This statistic provides the number of flexible bodies present in a
mechanical system. These correspond to individual blocks from the Flexible Bodies sublibrary.

Each individual flexible body block counts as one in this statistic. For example, two flexible body
blocks directly connected through a frame line count as two separate flexible bodies.

Flexible bodies do not combine with any rigid component blocks. For example, if two flexible body
blocks are connected through a Rigid Transform block, then the Rigid Transform block makes up a
rigid component wedged between two separate flexible bodies.

• Number of joints (total) — This statistic provides the total number of joints present in a
mechanical system. This number equals the sum of three types of joints: explicit tree, cut, and
implicit 6-DOF joints. For more information, see the statistic descriptions for these types of joints.

• Number of explicit tree joints — This statistic provides the number of joints in a mechanical
system that correspond to explicit joint blocks. This number excludes joints that are cut to open
kinematic loops.

• Number of implicit 6-DOF tree joints — This statistic provides the number of 6-DOF joints in a
mechanical system that do not correspond to explicit joint blocks. Simscape Multibody adds one
implicit 6-DOF joint for each portion of the system that is disconnected from the ground body.
Such implicit joints never create kinematic loops and are therefore never cut.

• Number of cut joints — This statistic provides the number of joints that are cut from a
mechanical system in order to open all of its closed kinematic loops. The number of cut joints
equals the number of closed loops present in the system.

• Number of constraints — This statistic provides the total number of constraints in a mechanical
system. This number includes constraint elements stemming from explicit constraint blocks as
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well as those generated from belt-cable networks. It does not include constraints stemming from
cut joints.

• Number of tree degrees of freedom (total) — This statistic provides the total number of
degrees of freedom in a mechanical system, before the application of any constraint equations.
This number equals the sum of the total number of uncut joint degrees of freedom and the total
number of body degrees of freedom. For more information, see the statistic descriptions for
Number of tree joint degrees of freedom and Number of flexible body degrees of freedom.

• Number of tree joint degrees of freedom — This statistic provides the number of uncut joint
degrees of freedom in a mechanical system. This number equals the sum of all degrees of freedom
that the uncut joints provide. It excludes degrees of freedom associated with cut joints.

• Number of flexible body degrees of freedom — This statistic provides the number of body
degrees of freedom in a mechanical system. This number equals the sum of all degrees of freedom
that the flexible bodies provide. Rigid components do not have any degrees of freedom and do not
contribute to this statistic.

• Number of position constraint equations (total) — This statistic provides the number of
scalar equations that impose position constraints on a mechanical system. Constraint equations
arise from three types of blocks: constraints, joints, and belt-cable blocks. Joint blocks contribute
constraint equations only if the joints are cut. The number of position constraint equations that a
cut joint contributes equals six minus the number of degrees of freedom that joint provides.

• Number of position constraint equations (non-redundant) — This statistic provides the
number of unique position constraint equations associated with a model. This number is smaller
than or equal to the total number of position constraint equations. The difference between the two
is the number of redundant position constraint equations, which are satisfied whenever the unique
position constraint equations are satisfied. Simscape Multibody attempts to remove redundant
equations to improve simulation performance.

• Number of mechanism degrees of freedom (minimum) — This statistic provides a lower
bound on the number of degrees of freedom in a mechanical system. It equals the difference
between the total number of (unconstrained) degrees of freedom and the number of non-
redundant position constraint equations. The actual number of degrees of freedom can exceed this
lower bound if Simscape Multibody fails to detect a position constraint equation.

Some position constraint equations become redundant only in certain configurations. If an
equation becomes redundant during simulation, the actual number of degrees of freedom in a
model can change. However, that number must still equal or exceed the lower bound that this
statistic provides.

• State vector size — This statistic provides the number of scalar values in the state vector of a
mechanical system.

• Average number of degrees of freedom in kinematic loops — This statistic provides the
average number of degrees of freedom in the closed kinematic loops of a mechanical system. The
average number is taken over all loops in the system. If the system has no kinematic loops, this
number equals zero.

See Also

More About
• “Simscape Model Statistics” on page 14-2
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1-D/3-D Interface Statistics
This node lists statistics related to the interface between all 1-D physical and 3-D multibody systems
present in the model. It appears only for models that connect blocks from the Simscape Multibody
library to blocks from Simscape, Simscape Driveline, Simscape Fluids, and Simscape Electrical
libraries, except the Specialized Power Systems blocks.

All connections are listed individually as Connection 1, Connection 2, and so on. If you select an
individual connection, the Sources section lists the source and destination ports for this connection:

• The Source column contains the full path to the interface port, starting from the top-level model,
with a link to the relevant block. If you click the link in the Source column, the corresponding
block is highlighted in the block diagram.

• The Value column specifies whether the port is the source or destination.

If you expand a connection node, the Statistics Viewer provides the filtering information: whether a
filter is used, and, if yes, the filter order and time constant.

See Also

More About
• “Simscape Model Statistics” on page 14-2
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View Model Statistics
This example shows how you can use model statistics to determine the effect of a change on model
complexity.

1 Open the Simple Mechanical System example model.

2 To view model statistics, in the model window, on the Debug tab, click Diagnostics > Simscape
> Statistics Viewer.

The Simscape Statistics window opens, but it does not contain any data. If you open a model, and
then open the Statistics Viewer before running the simulation, the statistics data is not available.
The Refresh button in the toolbar of the viewer window displays a warning symbol (yellow
triangle), and a message at the top of the viewer window tells you to click the Refresh button to
populate the viewer with data.

3 Click the Refresh button. The Simscape Statistics window now displays an overview of the
models statistics in a collapsed state.

14 Model Statistics
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4 Click  to expand all nodes.

You can see that, after variable elimination, the model contains five continuous differential
variables, no algebraic variables, no discrete variables, and no zero-crossing signals.

5 To limit the range of motion, add a Translational Hard Stop block to the model diagram, in
parallel with the Translational Inertia and the Translational Damper blocks, as shown in the
following figure.
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6 Refresh the model statistics. Again, expand all the nodes.

The revised model, after variable elimination, contains six differential variables and five algebraic
variables. This happened because you added a nonlinear block (Translational Hard Stop).
Therefore, the linear optimization that the solver initially performed on the model no longer
applies.

See Also

Related Examples
• “Access Block Variables Using Statistics Viewer” on page 14-13

More About
• “1-D Physical System Statistics” on page 14-4
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Access Block Variables Using Statistics Viewer
This example shows how you can use the Sources section of the Statistics Viewer to access a block
variable of interest, to verify (or change) its initialization priority and target value.

1 Open the Permanent Magnet DC Motor example model.

2 To view model statistics, in the model window, on the Debug tab, click Diagnostics > Simscape
> Statistics Viewer.

The Simscape Statistics window opens, but it does not contain any data. If you open a model, and
then open the Statistics Viewer before running the simulation, the statistics data is not available.
The Refresh button in the toolbar of the viewer window displays a warning symbol (yellow
triangle), and a message at the top of the viewer window tells you to click the Refresh button to
populate the viewer with data.

3 Click the Refresh button. The Simscape Statistics window now displays an overview of the
models statistics in a collapsed state. The status at the bottom of the window displays the
timestamp of its last update.

4 Expand the Number of variables node, then Number of continuous variables (retained),
and then click Number of differential variables.
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You can see that, after variable elimination, the model contains three continuous differential
variables, and the Sources section of the Statistics Viewer lists these three variables. For each
variable:

• The Source column contains the full path to the variable, starting from the top-level model,
with a link to the relevant block.

• The Value column contains the name of the variable, as it would appear in the Variables tab
of the block dialog box.

5 Click the first link in the Source column. The full path indicates that the source variable w
belongs to the Inertia block in the DC Motor subsystem of the top-level example model, therefore
the DC Motor subsystem opens and the corresponding block is highlighted in the block diagram,
as shown in the following figure.

6 Double-click the highlighted block.
7 In the block dialog box, click the Variables tab.
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According to the Value column in the Statistics Viewer, the name of the variable in the block
dialog box is Rotational velocity. The dialog box shows that this variable has high initialization
priority and a target value of 0 rad/s. You can modify the priority and value, if needed, and then
open the Variable Viewer to see the model initialization results.

See Also

Related Examples
• “Set Priority and Initial Target for Block Variables” on page 8-4

More About
• “1-D Physical System Statistics” on page 14-4
• “Block-Level Variable Initialization” on page 8-2
• “Variable Viewer” on page 8-18
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Model Statistics Available when Using the Partitioning Solver
If your model uses a Partitioning local solver, the Statistics Viewer contains additional statistics
specific to this solver type:

• Number of partitions — This statistic represents the total number of partitions in the model.
When you expand this node, you can view additional statistics, listed below.

• Total memory estimate — This statistic represents the estimate for memory usage, in kB, for
this model when using the exhaustive partition storage method.

• Additional nodes, named Partition1, Partition2, and so on, up to the total number of partitions in
the model. For each of these nodes, the Value column lists the integration method applied to this
partition. Possible methods are forward Euler (explicit) and backward Euler (implicit). For each
partition node, you can also see:

• Equation type — The Value column for this statistic lists the type of the equations in the
partition. Possible types are linear time-invariant, switched linear, and linear time-varying.

• Number of variables — This statistic represents the number of scalar variables in the
partition. When you select this node, the Sources section of the Statistics Viewer lists all the
variables that fall under this statistic. For each variable, the Source column contains the full
path to the variable, starting from the top-level model, with a link to the relevant block. If you
click the link in the Source column, the corresponding block is highlighted in the block
diagram. The Value column contains the name of the variable, as it would appear in the
Variables tab of the block dialog box.

• Number of equations — This statistic represents the number of scalar equations in the
partition. Sources of the equations are provided, if they are available. When you select this
node, the Sources section of the Statistics Viewer lists all the blocks that provide the
equations. If the block source code is available (that is, not protected), clicking the link in the
Source column opens the Simscape source file for this block in the MATLAB Editor, pointing to
the appropriate equation.

• Number of modes — If the Equation type is linear time-invariant or switched linear, this
statistic represents the number of modes in the partition. Every if and elseif statement in
Simscape source code corresponds to a mode. In general, when an implicit integration method
is applied to a partition, the more modes there are, the more iterations are possibly needed to
solve the equations for this partition.

• Number of configurations — This statistic represents the total number of different systems
of linear equations that need to be solved when simulating the partition. In the linear time-
invariant or switched linear cases, this is 2^n, where n is the number of modes in the partition.
To accelerate computation, decompositions of some systems are cached for each set of modes
(the Partition storage method parameter in the Solver Configuration block defines how the
decompositions are cached). If this number exceeds the greatest possible supported unsigned
integer value, the Value column for this statistic displays Overflow.

• Memory estimate — This statistic represents the estimate for memory usage, in kB, for this
partition when using the exhaustive partition storage method.

Estimate the Memory Budget for Exhaustive Partitioning Storage
This example shows how you can use the Statistics Viewer to estimate the memory budget needed for
simulating a model that uses the Partitioning solver.
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1 Open the Permanent Magnet DC Motor example model.

2 Double-click the Solver Configuration block, select the Use local solver check box, and then set
the Solver type to Partitioning.

3 To view model statistics, in the model window, on the Debug tab, click Diagnostics > Simscape
> Statistics Viewer. Click the Refresh button in the toolbar of the viewer window, if necessary,
to populate the viewer with data.

4 Expand the Number of partitions node.

The Total memory estimate statistic indicates that the estimate for memory usage for this
model is 3 kB. When you use the exhaustive partition storage method, the default memory budget
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allocated for partition storage is 1024 kB. Therefore, the default memory budget value is
sufficient for simulating this model, and you can even reduce it, if necessary.

If the memory estimate is unexpectedly large, you can investigate further by expanding each of
the individual partition nodes and checking the Memory estimate value for that partition.

See Also
Solver Configuration

More About
• “Increase Simulation Speed Using the Partitioning Solver” on page 11-19
• “1-D Physical System Statistics” on page 14-4
• “Access Block Variables Using Statistics Viewer” on page 14-13

14 Model Statistics

14-18



Physical Units

• “How to Work with Physical Units” on page 15-2
• “Unit Definitions” on page 15-3
• “How to Specify Units in Block Dialogs” on page 15-9
• “Thermal Unit Conversions” on page 15-10
• “How to Apply Affine Conversion” on page 15-12
• “Angular Units” on page 15-14
• “Units for Angular Velocity and Frequency” on page 15-15
• “Working with Simulink Units” on page 15-16
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How to Work with Physical Units
Parameters, variables, and physical signals can have units associated with them. You specify the units
along with the parameter values in the block dialogs, and Simscape unit manager performs the
necessary unit conversion operations when solving a physical network. Simscape blocks support
standard measurement systems. The default block units are meter-kilogram-second or MKS (SI).

Simscape software comes with a library of standard units, and you can define additional units as
needed (see “Unit Definitions” on page 15-3). You can use these units in your block diagrams:

• To specify the units of an input physical signal, type a unit name, or a mathematical expression
with unit names, in the Input signal unit field of the Simulink-PS Converter block dialog. You can
also select a unit from a drop-down list, which is prepopulated with some common input units.
Signal units that you specify in a Simulink-PS Converter block must match the input type expected
by the Simscape block connected to it. For example, when you provide the input signal for an Ideal
Angular Velocity Source block, specify angular velocity units, such as rad/s or rpm, in the
Simulink-PS Converter block, or leave it unitless. If you leave the block unitless, with the Input
signal unit parameter set to 1, then the physical signal units are inferred from the destination
block.

• Simscape block dialogs have drop-down combo boxes of units next to a parameter value, letting
you either select a unit from the drop-down list, or type a unit name (or a mathematical expression
with unit names) directly into the box. These drop-down lists are automatically populated by those
units that are commensurate with the unit of the parameter, based on the current list of unit
definitions. For example, if a parameter is specified, by default, with the units of meters per
second, m/s, the drop-down list of units contains commensurate units, such as mm/s, in/s, fps
(feet per second), fpm (feet per minute), and so on, including any other linear velocity units
currently defined in your unit registry.

• To specify the units of an output physical signal, type a unit name, or a mathematical expression
with unit names, in the Output signal unit field of the PS-Simulink Converter block dialog. You
can also select a unit from a drop-down list, which is prepopulated with some common output
units. The system compares the units you specified with the actual units of the input physical
signal coming into the converter block and applies a gain equal to the conversion factor before
outputting the Simulink signal. The default value is 1, which means that the unit is not specified. If
you do not specify a unit, or if the unit matches the actual units of the input physical signal, no
gain is applied.

For more information, see “How to Specify Units in Block Dialogs” on page 15-9.
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Unit Definitions
Simscape unit names are defined in the pm_units.m file, which is shipped with the product. You can
open this file to see how the physical units are defined in the product, and also as an example when
adding your own units. This file is located in the directory matlabroot\toolbox\physmod\common
\units\mli\m.

Default registered units and their abbreviations are listed in the following table. Use the
pm_getunits command to get an up-to-date list of units currently defined in your unit registry. Use
the pm_adddimension and pm_addunit commands to define additional units.
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Physical Unit Abbreviations Defined by Default in the Simscape Unit Registry

Quantity Abbreviation Unit
Acceleration gee Earth gravitational acceleration

(9.80665 m/s^2)
Amount of substance mol Mole
Angle rad

deg

rev

Radian

Degree

Revolution
Angular velocity rpm Revolutions/minute
Capacitance F

pF

nF

uF

Farad

Picofarad

Nanofarad

Microfarad
Charge C Coulomb
Conductance S

nS

uS

mS

Siemens

Nanosiemens

Microsiemens

Millisiemens
Current A

pA

nA

uA

mA

kA

Ampere

Picoampere

Nanoampere

Microampere

Milliampere

Kiloampere
Energy J

Btu_IT

eV

Joule

British thermal unit

Electronvolt
Flow rate lpm

gpm

Liter/minute

Gallon/minute
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Quantity Abbreviation Unit
Force N

dyn

lbf

mN

Newton

Dyne

Pound-force

Millinewton
Frequency Hz

kHz

MHz

GHz

Hertz

Kilohertz

Megahertz

Gigahertz
Inductance H

uH

mH

Henry

Microhenry

Millihenry
Length m

cm

mm

km

um

in

ft

mi

yd

Meter

Centimeter

Millimeter

Kilometer

Micrometer

Inch

Foot

Mile

Yard
Magnetic flux Wb Weber
Magnetic flux density T

G

Tesla

Gauss
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Quantity Abbreviation Unit
Mass kg

g

mg

t

lbm

oz

slug

Kilogram

Gram

Milligram

Tonne (metric ton)

Pound mass

Ounce

Slug
Pressure Pa

uPa

kPa

MPa

GPa

bar

kbar

atm

psi

ksi

Pascal

Micropascal

Kilopascal

Megapascal

Gigapascal

Bar

Kilobar

Atmosphere

Pound/inch^2

Kilopound/inch^2
Power W

uW

mW

kW

MW

HP_DIN

Watt

Microwatt

Milliwatt

Kilowatt

Megawatt

Horsepower
Resistance Ohm

kOhm

MOhm

GOhm

Ohm

Kiloohm

Megaohm

Gigaohm
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Quantity Abbreviation Unit
Temperature K

degC

degF

degR

deltaK, deltadegC,
deltadegF, deltadegR

Kelvin

Celsius

Fahrenheit

Rankine

Relative temperature units (see
“Thermal Unit Conversions” on
page 15-10)

Time s

min

hr

ms

us

ns

Second

Minute

Hour

Millisecond

Microsecond

Nanosecond
Velocity mph

fpm

fps

Miles/hour

Feet/minute

Feet/second
Viscosity absolute P

cP

reyn

Poise

Centipoise

Reyn
Viscosity kinematic St

cSt

newt

Stokes

Centistokes

Newt
Volume l

gal

igal

Liter

US liquid gallon

Imperial (UK) gallon
Voltage V

mV

kV

Volt

Millivolt

Kilovolt
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Note This table lists the unit abbreviations defined in the product. For information on how to use the
abbreviations above, or mathematical expressions with these abbreviations, to specify units for the
parameter values in the block dialogs, see “How to Specify Units in Block Dialogs” on page 15-9.
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How to Specify Units in Block Dialogs
Simscape block dialogs have drop-down combo boxes for units next to a parameter value. For
example, in the Constant Volume Chamber block dialog box, the drop-down list for the Chamber
volume parameter contains l, gal, in^3, ft^3, mm^3, cm^3, m^3, and km^3, and the drop-down list
for the Initial pressure parameter contains Pa, bar, psi, and atm.

You can either select a unit from the drop-down list, or type a commensurate unit name (or a
mathematical expression with unit names) directly into the unit combo box of the block dialog. You
can use the abbreviations for the units defined in your registry, or any valid mathematical expressions
with these abbreviations. For example, you can specify torque in newton-meters (N*m) or pound-feet
(lbf*ft). To specify velocity, you can use one of the defined unit abbreviations (mph, fpm, fps), or an
expression based on any combination of the defined units of length and time, such as meters/second
(m/s), millimeters/second (mm/s), inches/minute (in/min), and so on.

Note Affine units (such as Celsius or Fahrenheit) are not allowed in unit expressions. For more
information, see “About Affine Units” on page 15-10.

The following operators are supported in the unit mathematical expressions:

* Multiplication
/ Division
^ Power
+ Plus — for exponents only
- Minus — for exponents only
() Brackets to specify evaluation order

Metric unit prefixes, such as kilo, milli, or micro, are not supported. For example, if you want to use
milliliter as a unit of volume, you have to add it to the unit registry:

pm_addunit('ml', 0.001, 'l');

The drop-down lists next to parameter names are automatically populated by those units that are
commensurate with the unit of the parameter. If you specify the units by typing, it is your
responsibility to enter units that are commensurate with the unit of the parameter. The unit manager
performs error checking when you click Apply or OK in the block dialog box, and issues an error if
you type an incorrect unit.

In the Simulink-PS Converter and the PS-Simulink Converter block dialog boxes, the drop-down lists
are prepopulated with some common input and output units, and it is your responsibility to select or
type a unit expression commensurate with the expected input or output units. The error checking for
the converter blocks is performed at the time of simulation. See “Model Validation” on page 7-7 for
details.
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Thermal Unit Conversions
In this section...
“About Affine Units” on page 15-10
“When to Apply Affine Conversion” on page 15-10

About Affine Units
Thermal units often require an affine conversion, that is, a conversion that performs both
multiplication and addition. To convert from the old value Told to the new value Tnew, we need a linear
conversion coefficient L and an offset O:

Tnew = L * Told + O

For example, to convert a temperature reading from degrees Celsius into degrees Fahrenheit, the
linear term equals 9/5, and the offset equals 32:

TFahr = 9 / 5 * TCels + 32

Simscape unit manager defines kelvin (K) as the fundamental temperature unit. This makes Celsius
(degC) and Fahrenheit (degF) affine units because they are both related to kelvin with an affine
conversion. Rankine (degR) is defined in terms of kelvin with a zero linear offset and, therefore, is not
an affine unit.

The following are the default Simscape unit registry definitions for temperature units:
pm_adddimension('temperature', 'K');        % defines kelvin as fundamental temperature unit
pm_addunit('degC', [1 273.15], 'K');        % defines Celsius in terms of kelvin
pm_addunit('degF', [5/9 -32*5/9], 'degC');  % defines Fahrenheit in terms of Celsius
pm_addunit('degR', [5/9 0], 'K');           % defines rankine in terms of kelvin

When to Apply Affine Conversion
In dealing with affine units, sometimes you need to convert them using just the linear term. Usually,
this happens when the value you convert represents relative, rather than absolute, temperature, ΔT =
T1 – T2.

ΔTnew = L * ΔTold

In this case, adding the affine offset would yield incorrect conversion results.

For example, the outdoor temperature rose by 18 degrees Fahrenheit, and you need to input this
value into your model. When converting this value into kelvin, use linear conversion

ΔTkelvin = 5 / 9 * ΔTFahr

and you get 10 K, that is, the outdoor temperature changed by 10 kelvin. If you apply affine
conversion, you will get a temperature change of approximately 265 kelvin, which is incorrect.

This is even better illustrated if you use degrees Celsius for the input units because the linear term
for conversion between Celsius and kelvin is 1:

• If the outdoor temperature changed by 10 degrees Celsius (relative temperature value), then it
changed by 10 kelvin (do not apply affine conversion).
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• If the outdoor temperature is 10 degrees Celsius (absolute temperature value), then it is 283
kelvin (apply affine conversion).

For relative temperatures, you can also use the relative temperature units: deltaK, deltadegC,
deltadegF, deltadegR. These units are consistent with the Simulink unit database (see “Units in
Simulink” (Simulink)). If you use these units, affine conversion does not apply.

See Also

Related Examples
• “How to Apply Affine Conversion” on page 15-12
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How to Apply Affine Conversion
When you specify affine units for an input temperature signal, it is important to consider whether you
need to apply affine conversion. Usually this decision depends on whether the signal represents
absolute or relative temperature (see “When to Apply Affine Conversion” on page 15-10).

For example, you model a house-heating system, and you need to input the outdoor temperature. In
the following diagram, the Constant source block represents the average outdoor temperature, in
degrees Celsius, and the Sine source block adds the daily temperature variation. The average outdoor
temperature, in this case, is 12 degrees Celsius. Daily variation with an amplitude of 8 makes the
input outdoor temperature vary between 4 and 20 degrees Celsius.

This signal is an absolute temperature reading. Therefore, when the signal converts into kelvin for
further computations, you need to specify that it should use affine conversion. Double-click the
Simulink-PS Converter block, type degC in the Input signal unit field, and select the Apply affine
conversion check box.
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As a result, the Simulink-PS Converter block outputs a value varying between 277 K and 293 K.

See Also

More About
• “Thermal Unit Conversions” on page 15-10
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Angular Units
Simscape implementation of angular units relies on the concept of angular units, specifically radians,
being a unit but dimensionless. The notion of angular units being dimensionless is widely held in the
metrology community. The fundamental angular unit, radian, is defined in the Simscape unit registry
as:

pm_addunit('rad', 1, 'm/m');

which corresponds to the SI and NIST definition [1 on page 15-14]. In other words, Simscape unit
manager does not introduce a separate dimension, 'angle', with a fundamental unit of 'rad'
(similar to dimensions for length or mass), but rather defines the fundamental angular unit in terms
of meter over meter or, in effect, 1.

The additional angular units, degree and revolution, are defined respectively as:

pm_addunit('deg', pi/180, 'rad');
pm_addunit('rev', 2*pi, 'rad');

As a result, forward trigonometric functions, such as sin, cos, and tan, work directly with
arguments expressed in angular units. For example, cosine of 90 degrees equals the cosine of (pi/2)
radians and equals the cosine of (pi/2). Expansion of forward trigonometric functions works in a
similar manner.

Another effect of dimensionless implementation of angular units is the convenience of the work-
energy conversion. For example, torque (in N*m) multiplied by angle (in rad) can be added directly to
energy (in J, or N*m). If you specify other commensurate units for the components of this equation,
Simscape unit manager performs the necessary unit conversion operations and the result is the same.

References
[1] The NIST Reference on Constants, Units, and Uncertainty, https://physics.nist.gov/cuu/
Units/units.html
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Units for Angular Velocity and Frequency
Angular velocity units, such as rad/s, deg/s, and rpm, can also be used to measure frequency for
cyclical processes. This is consistent with frequency defined as revolutions per second in a
mechanical context, or cycles per second in an electrical context, and lets you write frequency-
dependent equations without requiring the 2*pi conversion factor. In the SI unit system, however,
the unit of frequency is hertz (Hz), defined as 1/s.

Simscape software defines the unit hertz (Hz) as 1/s, in compliance with the SI unit system. This
definition works well when frequency refers to a nonrotational periodic signal such as the frequency
of a PWM source. For cyclical processes, however, the block equations have to contain the 2*pi
conversion factor, to convert the numerical value specified in Hz, or s-1, to angular frequency.

As a result, frequency units (based on Hz) and angular velocity units (based on rpm) are not directly
convertible, and using one instead of the other may result in unexpected conversion factors applied to
the numerical values by the block equations. For example, the AC Voltage Source block explicitly
multiplies the value you specify for its Frequency parameter by 2*pi, to convert it to angular
frequency before calculating the sine function.

Drop-down lists of suggested units in block dialogs reflect this distinction. For example, if a block has
a Frequency parameter with the default unit of Hz, the drop-down list for this parameter contains
only units directly convertible to Hz (such as kHz, MHz, and GHz) and does not contain the angular
velocity units. Conversely, if you define a custom block where the Frequency parameter has the
default unit of rpm, its drop-down list of suggested units will include deg/s and rad/s, but will not
contain Hz, kHz, MHz, or GHz.

When you type a unit expression in the parameter units combo box (instead of selecting a value from
the drop-down list), the Simscape unit manager considers the units of frequency and angular velocity
to be commensurate. For example, when the default parameter unit is Hz, you are able to type not
only 1/s, but also expressions such as deg/s and rad/s. This behavior is consistent with the
Simscape implementation of angular units (see “Angular Units” on page 15-14). It is your
responsibility to verify that the unit expression you typed works correctly with the block equations
and reflects your design intent.

Note Prior to Release R2013a, the unit definition for Hz was rev/s. For information on how to
update legacy models and custom Simscape libraries written in R2012b or earlier, see Compatibility
Considerations under “Unit definition of Hz now consistent with SI”, in the R2013a Release Notes.
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Working with Simulink Units
You can specify physical units on Simulink signals. For details, see “Units in Simulink” (Simulink).

Interface blocks, such as Simulink-PS Converter and PS-Simulink Converter, handle the boundary
between the Simscape physical network and the Simulink blocks connected to it. These converter
blocks also handle the physical signal units:

• On a Simulink-PS Converter block, you specify the unit using the Input signal unit parameter.
This parameter defines the unit of the physical signal at the PS output port of the block, which
serves as the input signal for the Simscape physical network.

• On a PS-Simulink Converter block, you specify the unit using the Output signal unit parameter.
This unit must be commensurate with the unit of the input physical signal coming into the block.
The block applies a gain equal to the conversion factor before outputting the Simulink signal.

If you specify a physical unit on a Simulink signal connected to a Simulink-PS Converter or a PS-
Simulink Converter block, the software compares this unit with the unit specified inside the block. If
the parameter value does not match the physical unit of the Simulink signal connected to the block,
you get a warning.

Simulink unit database is fixed: you cannot add units or change unit definitions. When you add a new
unit to your Simscape unit registry, by using the pm_addunit function, and use this unit inside a
Simulink-PS Converter or PS-Simulink Converter block:

• If your unit definition conflicts with the one in the Simulink database, you get a warning about
incompatible unit.

• If you add a unit that does not exist in the Simulink database, you get a warning about undefined
unit.

Note that these warnings apply only to the Simulink database; the Simscape physical network works
as expected.

For example, you want to view the motor speed in revolutions per second, rather than revolutions per
minute (rpm):

1 Add a new unit rps, defined in terms or rpm:

pm_addunit('rps', 1/60, 'rpm');
2 To open the Permanent Magnet DC Motor example model, in the MATLAB Command Window,

type:

ssc_dcmotor
3 Simulate the model. Examine the simulation results in the Motor RPM scope window.
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4 Open the Sensing subsystem (designated as w in the block diagram), double-click the PS-
Simulink Converter block and type rps as the Output signal unit parameter value.

5 Rerun the simulation.

The model works correctly, with the scope displaying the results in revolutions per second.
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However, the output Simulink signal of the PS-Simulink Converter block now displays a warning
badge, with a message The units 'rps' are undefined. The detailed message explains
that the units are not defined in the Simulink unit database.

If you issue a pm_getunits command, you can see rps in the return unit list, which means that
the unit is successfully defined in the Simscape unit registry. In other words, the warning applies
only to Simulink unit checking.

6 To turn off the unit inconsistency warnings, in the MATLAB Command Window, type:

set_param('ssc_dcmotor','UnitsInconsistencyMsg','none');
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Add-On Product License Management

• “About the Simscape Editing Mode” on page 16-2
• “Set the Model Loading Preference” on page 16-7
• “Save a Model in Restricted Mode” on page 16-9
• “Work with a Model in Restricted Mode” on page 16-11
• “Switch from Restricted to Full Mode” on page 16-18
• “Get Editing Mode Information” on page 16-20
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About the Simscape Editing Mode
In this section...
“Suggested Workflows” on page 16-2
“What You Can Do in Restricted Mode” on page 16-3
“What You Can Do in Full Mode” on page 16-3
“Switching Between Modes” on page 16-3
“Working with Block Libraries” on page 16-5

Suggested Workflows
The Simscape Editing Mode functionality is implemented for customers who perform physical
modeling and simulation using Simscape platform and its add-on products: Simscape Driveline,
Simscape Electrical, Simscape Fluids, and Simscape Multibody. It allows you to open, simulate, and
save models that contain blocks from add-on products in Restricted mode, without checking out add-
on product licenses, as long as the products are installed on your machine. It is intended to provide
an economical way to distribute simulation models throughout a team or organization.

Note Unless your organization uses concurrent licenses, see the Simscape product page on the
MathWorks Web site for specific information on how to install add-on products on your machine, to be
able to work in Restricted mode.

The Editing Mode functionality supports widespread use of Physical Modeling products throughout
an engineering organization by making it economical for one user to develop a model and provide it
to many other users.

Specifically, this feature allows a user, model developer, to build a model that uses Simscape platform
and one or more add-on products and share that model with other users, model users. When building
the model in Full mode, the model developer must have a Simscape license and the add-on product
licenses for all the blocks in the model. For example, if a model combines Simscape, Simscape Fluids,
and Simscape Driveline blocks, the model developer needs to check out licenses for all three products
to work with it in Full mode. Once the model is built, model users need only to check out a Simscape
license to simulate the model and fine-tune its parameters in Restricted mode. As long as no
structural changes are made to the model, model users can work in Restricted mode and do not need
to check out add-on product licenses.

Another workflow, available with concurrent licenses only, lets multiple users, who all have Simscape
licenses, share a small number of add-on product licenses by working mostly in Restricted mode, and
temporarily switching models to Full mode only when they need to perform a specific design task that
requires being in Full mode.

Note It is recommended that you save all the models in Full mode before upgrading to a new version
of Simulink or Simscape software.

If you have saved a model in Restricted mode and, upon upgrading to a new product version, open
the model and it does not run, switch it to Full mode and save. You can then again switch to
Restricted mode and work without problem.
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What You Can Do in Restricted Mode
When your model is open in Restricted mode, you can:

• Simulate the model.
• Inspect parameters.
• Change certain block parameters. In general, you can change numerical parameter values, but

cannot change the block parameterization options. See the block reference pages for specifics.
• Generate code.
• Make data logging or visualization changes.
• Add or delete regular Simulink blocks (such as sources or scopes) and appropriate connections.

For other types of changes, listed in the following section on page 16-3, your model has to be in
Full mode. Some of these disallowed changes are impossible to make in Restricted mode (for
example, Restricted parameters are grayed out in block dialog boxes). Other changes, like changing
the physical topology of a model, are not explicitly disallowed, but if you make these changes in
Restricted mode, the software will issue an error message when you try to run, compile, or save such
a model.

What You Can Do in Full Mode
You need to open a model in Full mode if you need to do any of the following:

• Add or delete Physical Modeling blocks (that is, Simscape blocks or blocks from the add-on
product libraries).

• Make or break Physical connections (between Conserving or Physical Signal ports).
• Change the types of signals going into actuators or out of sensors (for example, from velocity to

torque).
• Change configuration parameters.
• Change block parameterization options and other restricted parameters.
• Change physical units of parameters.
• Protect a referenced model containing Physical Modeling blocks.

Switching Between Modes
The following flow chart shows what happens when you switch between modes.
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New models are always created in Full mode. You can then either save the model in Full mode, or
switch to Restricted mode and save the model in Restricted mode.

When you load an existing model, the license manager checks whether it has been saved in Full or
Restricted mode.

• If the model has been saved in Restricted mode, it opens in Restricted mode.
• If the model has been saved in Full mode, the license manager checks whether all the add-on

product licenses for this model are available and, if so, opens it in Full mode. If a add-on product
license is not available, the license manager issues an error message and opens the model in
Restricted mode. See also “Example with Multiple Add-On Products” on page 16-5.

Note You can set a Simulink preference to specify that the models are always to open in Restricted
mode, regardless of the way they have been saved.
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When a model is open, you can transition it between Full and Restricted modes at any time, in either
direction:

• When you try to switch from Restricted to Full mode, the license manager checks whether all the
add-on product licenses for this model are available. If a add-on product license is not available,
the license manager issues an error message and the model stays in Restricted mode. See also
“Example with Multiple Add-On Products” on page 16-5.

• No checks are performed when switching from Full to Restricted mode.

Note If a add-on product license has been checked out to open a model in Full mode, it remains
checked out for the remainder of the MATLAB session. Switching to Restricted mode does not
immediately return the license.

Example with Multiple Add-On Products

When you try to open a model in Full mode or to switch from Restricted to Full mode, the license
manager scans the model and attempts to check out the required add-on product licenses as it
encounters them in the model. If a license is not available, the license manager issues an error
message and the model stays in Restricted mode. The licenses are checked out sequentially. As a
result, if a model uses blocks from multiple add-on products, some of the add-on product licenses may
have already been checked out by the time the license manager encounters an unavailable license. In
this case, these add-on product licenses stay checked out until you quit the MATLAB session, even
though the model is in Restricted mode.

For example, consider a model that uses blocks from Simscape Fluids and Simscape Driveline
libraries, but the user who tries to open it has only the Simscape Driveline license available. It may
happen that the license manager checks out a Simscape Driveline license first, and then tries to
check out a Simscape Fluids license, which is not available. The license manager then issues an error
message and opens the model in Restricted mode, but the Simscape Driveline license stays checked
out until the end of the MATLAB session.

Working with Block Libraries
This section describes the specifics of working with block libraries while using the Editing Mode
functionality. These rules are applicable to any physical modeling blocks, that is, blocks from all
Simscape libraries, including the add-on products. In general, you need to work in Full mode when
you modify a library block. However, when you open a model that references the modified block, you
may work in Restricted mode, under certain conditions. The following summary details the Editing
Mode rules for modifying and using library blocks:

• To add physical modeling blocks to a library block, you need to work in Full mode.

• If this library block had not previously contained physical modeling blocks, you need to work in
Full mode to load a preexisting model that uses this library block or to drag this block to a
model.

• If this library block had previously contained physical modeling blocks, you can work in
Restricted mode when loading a preexisting model that uses this library block. However, you
have to work in Full mode to drag this block from the library to a model.

• To add external physical ports to a library block, you need to work in Full mode.
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• You can work in Restricted mode when loading a preexisting model that uses this library block.
• However, to connect these additional ports, you need to work in Full mode because you are

changing the model topology.
• To delete external physical ports from a library block, you need to work in Full mode. If these

ports were connected in a model saved in Restricted mode, loading the model causes the topology
to change, so you need to switch to Full mode to save or compile the model.

Resolving Block Library Links

All Simscape blocks in your models, including the add-on products' blocks, must have resolved block
library links. You can neither disable nor break these library links. This is a global requirement of
Simscape platform, which is necessary to enforce the Editing Mode rules for modifying and using
library blocks, listed above. A model with broken library links will neither compile nor save. You must
restore all the broken block library links for your model to be valid.

If you want to customize certain blocks and use them in your models, you must add these modified
blocks to your own custom library, then copy the block instances that you need to your model.

See Also

Related Examples
• “Set the Model Loading Preference” on page 16-7
• “Save a Model in Restricted Mode” on page 16-9
• “Work with a Model in Restricted Mode” on page 16-11
• “Switch from Restricted to Full Mode” on page 16-18

More About
• “Get Editing Mode Information” on page 16-20
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Set the Model Loading Preference
By default, when you load an existing model, the license manager checks whether it has been saved
in Full or Restricted mode and tries to open it in this mode. However, you can set your preferences so
that the models are always open in Restricted mode, regardless of the way they have been saved.

1 On the MATLAB Toolstrip, click Preferences. The Preferences dialog box opens.
2 In the left pane of the Preferences dialog box, select Simscape. The right pane displays the

Editing Mode group box. By default, the Load models using option is set to Editing mode
specified in models.

3 Select Restricted mode always from the drop-down list, as shown, and click OK.

Now, when you open a model, the license manager does not attempt to check out add-on product
licenses and always opens the model in Restricted mode.

See Also

Related Examples
• “Save a Model in Restricted Mode” on page 16-9
• “Work with a Model in Restricted Mode” on page 16-11
• “Switch from Restricted to Full Mode” on page 16-18

More About
• “About the Simscape Editing Mode” on page 16-2
• “Get Editing Mode Information” on page 16-20
• “Domain-Specific Line Styles” on page 1-34
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• “About Simscape Run-Time Parameters” on page 10-2
• “Stream Logging Data to Disk” on page 13-37
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Save a Model in Restricted Mode
Rather than setting your preferences so that all the models always open in Restricted mode, you can
switch an individual model to Restricted mode before saving it. Such a model will then, by default,
open in Restricted mode.

1 In the Simulink Toolstrip at the top of the model window, open the Modeling tab and click
Model Settings. The Configuration Parameters dialog box opens.

2 In the left pane of the Configuration Parameters dialog box, select Simscape. The right pane
displays the Editing Mode option, which is by default set to Full.

3 Select Restricted from the drop-down list, as shown, and click OK.

4 Save the model.

Note The Simscape entry does not appear in the left pane of the Configuration Parameters dialog
box until you add at least one Physical Modeling block to your model. If you create an additional
configuration set for a model, the Simscape entry does not appear in it until you either activate it or
perform a Physical Modeling operation, such as adding or deleting a Physical Modeling block or
connection, opening a Physical Modeling block dialog box, and so on.

Once you have switched a model to Restricted mode, working with it follows the rules described in
“Work with a Model in Restricted Mode” on page 16-11. Note, however, that the add-on product
licenses for this model stay checked out until you quit the MATLAB session.

When you open a model that has been saved in Restricted mode, the license manager opens it in
Restricted mode and does not check out the add-on product licenses.
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Example of Saving a Model in Restricted Mode
In this example, you switch a model to Restricted mode and save it.

1 Open the Simple Mechanical System example model (ssc_simple_mechanical_system).

2 In the Simulink Toolstrip at the top of the model window, open the Modeling tab and click
Model Settings. The Configuration Parameters dialog box opens.

3 In the left pane of the Configuration Parameters dialog box, select Simscape. The right pane
displays the Editing Mode option, which is set to Full by default.

4 Select Restricted from the drop-down list and click OK.
5 Save the model as model_test_edit_mode.

See Also

Related Examples
• “Set the Model Loading Preference” on page 16-7
• “Work with a Model in Restricted Mode” on page 16-11
• “Switch from Restricted to Full Mode” on page 16-18

More About
• “About the Simscape Editing Mode” on page 16-2
• “Get Editing Mode Information” on page 16-20
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Work with a Model in Restricted Mode
When you open a model in Restricted mode, you can perform a variety of tasks: simulate the model,
inspect and fine-tune block parameters, add and delete basic Simulink blocks, and so on. For a
complete list of allowed operations, see “What You Can Do in Restricted Mode” on page 16-3.

When you open a block dialog box in Restricted mode, some of the block parameters may be grayed
out. These are the so-called restricted parameters that can be modified only in Full mode. In general,
you can change numerical parameter values in Restricted mode, but you cannot change the block
parameterization options. See the block reference pages for specifics. Note also that when a
restricted parameter defines the block parameterization schema, nonrestricted parameters available
for fine-tuning in Restricted mode depend on the value of this restricted parameter. For example, in a
Constant Volume Chamber block, the Chamber specification parameter is restricted. If, at the time
the model entered Restricted mode, this parameter was set to By volume, then the nonrestricted
parameters available for fine-tuning would be Chamber volume, Specific heat ratio, and Initial
pressure. If, however, it was set to By length and diameter, you will have a different set of
parameters available in Restricted mode.

You cannot change physical units in Restricted mode. When you open a block dialog box in Restricted
mode, the drop-down lists of units next to a parameter name and value are grayed out. When you
open a PS-Simulink Converter or Simulink-PS Converter block dialog box, the Unit parameter is
grayed out.

The following examples illustrate operations allowed and disallowed in Restricted mode.

How to Simulate and Fine-Tune a Model in Restricted Mode
This example shows how you can work with a model in Restricted mode by changing certain
parameter values and observing the simulation results.

1 Open the model_test_edit_mode model, which you saved in Restricted mode in “Example of
Saving a Model in Restricted Mode” on page 16-10. The model opens in Restricted mode.

2 Open the Lever C Position scope and simulate the model. The models runs and simulates in
Restricted mode.
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3 Double-click the Wheel and Axle A block to open its dialog box. Notice that the Mechanism
orientation parameter is grayed out, because you cannot modify the block driving direction in
Restricted mode.

4 Change the Wheel radius parameter value to 0.1.
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5 Simulate the model again. Notice that the motion amplitude of node C became smaller as a result
of the wheel radius change.

6 Double-click the Mass block and change the Mass parameter value to 24.
7 Simulate the model. Notice that doubling the mass resulted in increased vibrations.
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How to Add and Delete Simulink Blocks in Restricted Mode
This example shows how you can change the model input signal in Restricted mode by adding and
deleting basic Simulink blocks.

1 Open the model_test_edit_mode model, which you saved in Restricted mode in “Example of
Saving a Model in Restricted Mode” on page 16-10. The model opens in Restricted mode.

2 Open the Lever C Position scope and simulate the model.
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3 Double-click the Force Input subsystem to open it.

4 Inside the subsystem, delete the Signal Builder block named Force Input. Replace it with a Sine
Wave block from the Simulink Sources library, as shown below.

5 Simulate the model again. The model successfully compiles and simulates in Restricted mode.
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Performing an Operation Disallowed in Restricted Mode
This example shows what happens when you perform an operation that is disallowed in Restricted
mode.

1 Open the model_test_edit_mode model, which you saved in Restricted mode in “Example of
Saving a Model in Restricted Mode” on page 16-10. The model opens in Restricted mode.

2 Double-click the P subsystem to open it.
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3 Delete the connection line between port P of the Ideal Translational Motion Sensor block and the
PS-Simulink Converter block. Instead, connect port V of the Ideal Translational Motion Sensor
block to the input port of the PS-Simulink Converter block, to measure the velocity on node C of
the lever.

4 Try to simulate the model. An error message appears saying that the model cannot be compiled
because its topology has been changed while in Restricted mode. You can either undo the
changes, or switch to Full mode, as described in “Switch from Restricted to Full Mode” on page
16-18.

See Also

Related Examples
• “Set the Model Loading Preference” on page 16-7
• “Save a Model in Restricted Mode” on page 16-9
• “Switch from Restricted to Full Mode” on page 16-18

More About
• “About the Simscape Editing Mode” on page 16-2
• “Get Editing Mode Information” on page 16-20
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Switch from Restricted to Full Mode
If you need to perform a task that is disallowed in Restricted mode, you can try to switch the model to
Full mode.

1 In the Simulink Toolstrip at the top of the model window, open the Modeling tab and click
Model Settings. The Configuration Parameters dialog box opens.

2 In the left pane of the Configuration Parameters dialog box, select Simscape. The right pane
displays the Editing Mode option.

3 Select Full from the drop-down list, as shown, and click OK.

The license manager checks whether all the add-on product licenses for this model are available.
If yes, it checks out the add-on product licenses and switches the model to Full mode. If a add-on
product license is not available, the license manager issues an error message and the model
stays in Restricted mode.

Note If the switch to Full mode fails but some of the add-on product licenses have already been
checked out, they stay checked out until you quit the MATLAB session. For more information, see
“Example with Multiple Add-On Products” on page 16-5.

Once the model is switched to Full mode, you can perform the needed design and simulation tasks,
and then either save it in Full mode, or switch back to Restricted mode and save it in Restricted
mode.
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See Also

Related Examples
• “Set the Model Loading Preference” on page 16-7
• “Save a Model in Restricted Mode” on page 16-9
• “Work with a Model in Restricted Mode” on page 16-11

More About
• “About the Simscape Editing Mode” on page 16-2
• “Get Editing Mode Information” on page 16-20
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Get Editing Mode Information
In this section...
“What Is the Current Mode?” on page 16-20
“Which Licenses Are Checked Out?” on page 16-20

What Is the Current Mode?
If you are unsure whether the model is currently open in Restricted or Full mode, you can check by
following these steps.

1 In the Simulink Toolstrip at the top of the model window, open the Modeling tab and click
Model Settings. The Configuration Parameters dialog box opens.

2 In the left pane of the Configuration Parameters dialog box, select Simscape. The right pane
displays the Editing Mode option, which is either Full or Restricted.

3 At this point, you can either try switching the mode by selecting a different option from the drop-
down list, or click Cancel to stay in the current mode.

Which Licenses Are Checked Out?
Use the MATLAB license command to get a list of all the licenses currently in use. In the MATLAB
Command Window, type

license('inuse')

This command returns a list of licenses checked out in the current MATLAB session. In the list,
products are listed alphabetically by their license feature names.

See Also

Related Examples
• “Set the Model Loading Preference” on page 16-7
• “Save a Model in Restricted Mode” on page 16-9
• “Work with a Model in Restricted Mode” on page 16-11
• “Switch from Restricted to Full Mode” on page 16-18

More About
• “About the Simscape Editing Mode” on page 16-2
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